147 research outputs found

    Two-warehouse Inventory Model with Multivariate Demand and K-release Rule

    Get PDF
    AbstractIn this paper, we’ve projected a two-warehouse inventory model for deteriorating things beneath the impact of inflation and continuance of cash, wherever demand follows a rare combination of the linear time variable and on-hand inventory level. In one in the entire warehouse (OW), time-varying linear deterioration was thought-about and within the different (RW) weibull distributed deterioration was studied. Here, shortages were allowed and part backlogged. The stock is transferred from the RW to the OW following a bulk unharness rule. The target here is to seek out the optimum amount to that ought to be ordered and also the optimum variety of cycles during which the number from RW should be transferred to OW to maximize world wide web profit per unit time. The model has additionally been exemplified with the many numerical examples. The results have additionally been understood diagrammatically

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter Weibull distributed deterioration

    Get PDF
    In this paper, an attempt is made to develop two inventory models for deteriorating items with variable demand dependent on the selling price and frequency of advertisement of items. In the first model, shortages are not allowed whereas in the second, these are allowed and partially backlogged with a variable rate dependent on the duration of waiting time up to the arrival of next lot. In both models, the deterioration rate follows three-parameter Weibull distribution and the transportation cost is considered explicitly for replenishing the order quantity. This cost is dependent on the lot-size as well as the distance from the source to the destination. The corresponding models have been formulated and solved. Two numerical examples have been considered to illustrate the results and the significant features of the results are discussed. Finally, based on these examples, the effects of different parameters on the initial stock level, shortage level (in case of second model only), cycle length along with the optimal profit have been studied by sensitivity analyses taking one parameter at a time keeping the other parameters as same

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    Two-Warehouse Partial Backlogging Inventory Model For Deteriorating Items With Ramp Type Demand

    Get PDF
    This paper deals with two warehouse system for deteriorating items with ramp type demand. In this inventory model initially demand is considered to be linear function of time and it became constant after a finite time parameter. Holding cost assume to be constant in both warehouse. Partial backlogging is allowed. The proposed model is developing to minimize the total inventory cost which includes holding cost, backlogging cost, lost sale cost, and deterioration cost. Here three cases are taken into consideration depending on time where demand becomes constant. This is only an analytic approach towards the model. Keywords: - Two warehouse inventory, ramp type demand, holding cost, deteriorating item

    Modelos de Inventarios con Productos Perecederos: Revisión de la Literatura

    Get PDF
    This paper presents a review of the main characteristics of the mathematical modelsdeveloped by the scientific community in order to determine an optimal inventory policyfor deteriorating items. Thus, a classified bibliography of 390 articles published from2001 to 2014 in high-impact journals is submitted while considering the type of demandand deterioration, the integration of inventory and pricing decisions, the inclusionof shortage and/or the time value of money, the consideration of multiple items and/ormulti-echelon systems, and the incorporation of uncertain parameters other than demand.Finally, research questions not yet addressed by the research community in the field ofinventory control for deteriorating items are pointed out.En el presente artículo se lleva a cabo una revisión de las principales características estudiadas por la comunidad científica en el desarrollo de modelos matemáticos que buscan definir una política de inventario óptima para productos que se deterioran. De este modo, se referencian 390 artículos publicados a partir del año 2001 en revistas de gran impacto, teniendo en cuenta: el tipo de demanda y deterioro representado en los modelos matemáticos, el estudio de una política de precio óptima, la inclusión de faltantes y/o valor del dinero en el tiempo, el estudio de múltiples productos y/o dos o más eslabones de la cadena de suministro, y la utilización de parámetros o variables difusas. Finalmente, se identifican oportunidades de investigación que a la fecha no han sido abordadas por la comunidad científica en este campo del conocimiento

    Responsible Inventory Models for Operation and Logistics Management

    Get PDF
    The industrialization and the subsequent economic development occurred in the last century have led industrialized societies to pursue increasingly higher economic and financial goals, laying temporarily aside the safeguard of the environment and the defense of human health. However, over the last decade, modern societies have begun to reconsider the importance of social and environmental issues nearby the economic and financial goals. In the real industrial environment as well as in today research activities, new concepts have been introduced, such as sustainable development (SD), green supply chain and ergonomics of the workplace. The notion of “triple bottom line” (3BL) accounting has become increasingly important in industrial management over the last few years (Norman and MacDonald, 2004). The main idea behind the 3BL paradigm is that companies’ ultimate success should not be measured only by the traditional financial results, but also by their ethical and environmental performances. Social and environmental responsibility is essential because a healthy society cannot be achieved and maintained if the population is in poor health. The increasing interest in sustainable development spurs companies and researchers to treat operations management and logistics decisions as a whole by integrating economic, environmental, and social goals (Bouchery et al., 2012). Because of the wideness of the field under consideration, this Ph.D. thesis focuses on a restricted selection of topics, that is Inventory Management and in particular the Lot Sizing problem. The lot sizing problem is undoubtedly one of the most traditional operations management interests, so much so that the first research about lot sizing has been faced more than one century ago (Harris, 1913). The main objectives of this thesis are listed below: 1) The study and the detailed analysis of the existing literature concerning Inventory Management and Lot Sizing, supporting the management of production and logistics activities. In particular, this thesis aims to highlight the different factors and decision-making approaches behind the existing models in the literature. Moreover, it develops a conceptual framework identifying the associated sub-problems, the decision variables and the sources of sustainable achievement in the logistics decisions. The last part of the literature analysis outlines the requirements for future researches. 2) The development of new computational models supporting the Inventory Management and Sustainable Lot Sizing. As a result, an integrated methodological procedure has been developed by making a complete mathematical modeling of the Sustainable Lot Sizing problem. Such a method has been properly validated with data derived from real cases. 3) Understanding and applying the multi-objective optimization techniques, in order to analyze the economic, environmental and social impacts derived from choices concerning the supply, transport and management of incoming materials to a production system. 4) The analysis of the feasibility and convenience of governmental systems of incentives to promote the reduction of emissions owing to the procurement and storage of purchasing materials. A new method based on the multi-objective theory is presented by applying the models developed and by conducting a sensitivity analysis. This method is able to quantify the effectiveness of carbon reduction incentives on varying the input parameters of the problem. 5) Extending the method developed in the first part of the research for the “Single-buyer” case in a "multi-buyer" optics, by introducing the possibility of Horizontal Cooperation. A kind of cooperation among companies in different stages of the purchasing and transportation of raw materials and components on a global scale is the Haulage Sharing approach which is here taken into consideration in depth. This research was supported by a fruitful collaboration with Prof. Robert W. Grubbström (University of Linkoping, Sweden) and its aim has been from the beginning to make a breakthrough both in the theoretical basis concerning sustainable Lot Sizing, and in the subsequent practical application in today industrial contexts
    corecore