548 research outputs found

    An automated design methodology of RF circuits by using Pareto-optimal fronts of EMsimulated inductors

    Get PDF
    A new design methodology for radiofrequency circuits is presented that includes electromagnetic (EM) simulation of the inductors into the optimization flow. This is achieved by previously generating the Pareto-optimal front (POF) of the inductors using EM simulation. Inductors are selected from the Pareto front and their S-parameter matrix is included in the circuit netlist that is simulated using an RF simulator. Generating the EM-simulated POF of inductors is computationally expensive, but once generated, it can be used for any circuit design. The methodology is illustrated both for a singleobjective and a multiobjective optimization of a low noise amplifierMinisterio de Economía y Competitividad TEC2013-45638-C3-3-R, TEC2013-40430-RJunta de Andalucía PIC12-TIC-1481Consejo Superior de Investigaciones Científicas 201350E05

    Ready-to-Fabricate RF Circuit Synthesis Using a Layout- and Variability-Aware Optimization-Based Methodology

    Get PDF
    In this paper, physical implementations and measurement results are presented for several Voltage Controlled Oscillators that were designed using a fully-automated, layout- and variability-aware optimization-based methodology. The methodology uses a highly accurate model, based on machine-learning techniques, to characterize inductors, and a multi-objective optimization algorithm to achieve a Pareto-optimal front containing optimal circuit designs offering different performance trade-offs. The final outcome of the proposed methodology is a set of design solutions (with their GDSII description available and ready-to-fabricate) that need no further designer intervention. Two key elements of the proposed methodology are the use of an optimization algorithm linked to an off-the-shelf simulator and an inductor model that yield EM-like accuracy but with much shorter evaluation times. Furthermore, the methodology guarantees the same high level of robustness against layout parasitics and variability that an expert designer would achieve with the verification tools at his/her disposal. The methodology is technology-independent and can be used for the design of radio frequency circuits. The results are validated with experimental measurements on a physical prototype

    Una aproximación multinivel para el diseño sistemático de circuitos integrados de radiofrecuencia.

    Get PDF
    Tesis reducida por acuerdo de confidencialidad.En un mercado bien establecido como el de las telecomunicaciones, donde se está evolucionando hacia el 5G, se estima que hoy en día haya más de 2 Mil Millones de usuarios de Smartphones. Solo de por sí, este número es asombroso. Pero nada se compara a lo que va a pasar en un futuro muy próximo. El próximo boom tecnológico está directamente conectado con el mercado emergente del internet of things (IoT). Se estima que, en 2020, habrá 20 Mil Millones de dispositivos físicos conectados y comunicando entre sí, lo que equivale a 4 dispositivos físicos por cada persona del planeta. Debido a este boom tecnológico, van a surgir nuevas e interesantes oportunidades de inversión e investigación. De hecho, se estima que en 2020 se van a invertir cerca de 3 Mil Millones de dólares solo en este mercado, un 50% más que en 2017. Todos estos dispositivos IoT tienen que comunicarse inalámbricamente entre sí, algo en lo que los circuitos de radiofrecuencia (RF) son imprescindibles. El problema es que el diseño de circuitos RF en tecnologías nanométricas se está haciendo extraordinariamente difícil debido a su creciente complejidad. Este hecho, combinado con los críticos compromisos entre las prestaciones de estos circuitos, tales como el consumo de energía, el área de chip, la fiabilidad de los chips, etc., provocan una reducción en la productividad en su diseño, algo que supone un problema debido a las estrictas restricciones time-to-market de las empresas. Es posible concluir, por tanto, que uno de los ámbitos en los que es tremendamente importante centrarse hoy en día, es el desarrollo de nuevas metodologías de diseño de circuitos RF que permitan al diseñador obtener circuitos que cumplan con especificaciones muy exigentes en un tiempo razonable. Debido a las complejas relaciones entre prestaciones de los circuitos RF (por ejemplo, ruido de fase frente a consumo de potencia en un oscilador controlado por tensión), es fácil comprender que el diseño de circuitos RF es una tarea extremadamente complicada y debe ser soportada por herramientas de diseño asistido por ordenador (EDA). En un escenario ideal, los diseñadores tendrían una herramienta EDA que podría generar automáticamente un circuito integrado (IC), algo definido en la literatura como un compilador de silicio. Con esta herramienta ideal, el usuario sólo estipularía las especificaciones deseadas para su sistema y la herramienta generaría automáticamente el diseño del IC listo para fabricar (lo que se denomina diseño físico o layout). Sin embargo, para sistemas complejos tales como circuitos RF, dicha herramienta no existe. La tesis que se presenta, se centra exactamente en el desarrollo de nuevas metodologías de diseño capaces de mejorar el estado del arte y acortar la brecha de productividad existente en el diseño de circuitos RF. Por lo tanto, con el fin de establecer una nueva metodología de diseño para sistemas RF, se han de abordar distintos cuellos de botella del diseño RF con el fin de diseñar con éxito dichos circuitos. El diseño de circuitos RF ha seguido tradicionalmente una estrategia basada en ecuaciones analíticas derivadas específicamente para cada circuito y que exige una gran experiencia del diseñador. Esto significa que el diseñador plantea una estrategia para diseñar el circuito manualmente y, tras varias iteraciones, normalmente logra que el circuito cumpla con las especificaciones deseadas. No obstante, conseguir diseños con prestaciones óptimas puede ser muy difícil utilizando esta metodología, ya que el espacio de diseño (o búsqueda) es enorme (decenas de variables de diseño con cientos de combinaciones diferentes). Aunque el diseñador llegue a una solución que cumpla todas las especificaciones, nunca estará seguro de que el diseño al que ha llegado es el mejor (por ejemplo, el que consuma menos energía). Hoy en día, las técnicas basadas en optimización se están utilizando con el objetivo de ayudar al diseñador a encontrar automáticamente zonas óptimas de diseño. El uso de metodologías basadas en optimización intenta superar las limitaciones de metodologías previas mediante el uso de algoritmos que son capaces de realizar una amplia exploración del espacio de diseño para encontrar diseños de prestaciones óptimas. La filosofía de estas metodologías es que el diseñador elige las especificaciones del circuito, selecciona la topología y ejecuta una optimización que devuelve el valor de cada componente del circuito óptimo (por ejemplo, anchos y longitudes de los transistores) de forma automática. Además, mediante el uso de estos algoritmos, la exploración del espacio de diseño permite estudiar los distintos y complejos compromisos entre prestaciones de los circuitos de RF. Sin embargo, la problemática del diseño de RF es mucho más amplia que la selección del tamaño de cada componente. Con el objetivo de conseguir algo similar a un compilador de silicio para circuitos RF, la metodología desarrollada en la tesis, tiene que ser capaz de asegurar un diseño robusto que permita al diseñador tener éxito frente a medidas experimentales, y, además, las optimizaciones tienen que ser elaboradas en tiempos razonables para que se puedan cumplir las estrictas restricciones time-to-market de las empresas. Para conseguir esto, en esta tesis, hay cuatro aspectos clave que son abordados en la metodología: 1. Los inductores integrados todavía son un cuello de botella en circuitos RF. Los parásitos que aparecen a altas frecuencias hacen que las prestaciones de los inductores sean muy difíciles de modelar. Existe, por tanto, la necesidad de desarrollar nuevos modelos más precisos, pero también muy eficientes computacionalmente que puedan ser incluidos en metodologías que usen algoritmos de optimización. 2. Las variaciones de proceso son fenómenos que afectan mucho las tecnologías nanométricas, así que para obtener un diseño robusto es necesario tener en cuenta estas variaciones durante la optimización. 3. En las metodologías de diseño manual, los parásitos de layout normalmente no se tienen en cuenta en una primera fase de diseño. En ese sentido, cuando el diseñador pasa del diseño topológico al diseño físico, puede que su circuito deje de cumplir con las especificaciones. Estas consideraciones físicas del circuito deben ser tenidas en cuenta en las primeras etapas de diseño. Por lo tanto, con el fin de abordar este problema, la metodología desarrollada tiene que tener en cuenta los parásitos de la realización física desde una primera fase de optimización. 4. Una vez se ha desarrollado la capacidad de generar distintos circuitos RF de forma automática utilizando esta metodología (amplificadores de bajo ruido, osciladores controlados por tensión y mezcladores), en la tesis se aborda también la composición de un sistema RF con una aproximación multinivel, donde el proceso empieza por el diseño de los componentes pasivos y termina componiendo distintos circuitos, construyendo un sistema (por ejemplo, un receptor de radiofrecuencia). La tesis aborda los cuatro problemas descritos anteriormente con éxito, y ha avanzado considerablemente en el estado del arte de metodologías de diseño automáticas/sistemáticas para circuitos RF.Premio Extraordinario de Doctorado U

    Intelligent Computing: The Latest Advances, Challenges and Future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners

    A Mechanistically Guided Approach to Treatment of Multi-Wavelet Reentry: Experiments in a Computational Model of Cardiac Propagation

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States today. However, treatment options remain limited despite the enormous magnitude of both AF prevalence and the associated economic cost. Of those treatment options that are available, ablation-based interventional methods have demonstrated the highest rates of long-term cure. Unfortunately, these methods have substantially lower efficacy in patients with heavier burdens of disease, thus leaving the most affected individuals with the least hope for successful treatment. The focus of this research is to develop a mechanistically guided approach towards the treatment of multi-wavelet reentry (MWR), one of the primary drivers of AF. For this purpose, we use a computational model of electrical propagation in cardiac tissue to simulate both episodes of fibrillatory activity and the ablative treatment thereof. We demonstrate that the probability of forming the reentrant circuits necessary for continuous electrical activity is a function of the shape and size of a tissue as well as its underlying cellular properties. Ablation at tissue sites with high probability of circuit formation more efficiently reduces the overall duration of fibrillatory episodes than ablation at sites with low probability. We then propose and validate in silico a parameter-based metric for predicting the propensity of an individual tissue to support fibrillation, which we term the fibrillogenicity index. Using this metric, we develop an algorithm for prospectively determining optimized, tissue-specific ablation patterns. Finally, we examine the relationship between multi-wavelet reentry and focal drivers, and demonstrate that MWR and fibrillatory conduction exist along a continuum. We examine the complex interplay between functional and structural substrates within fibrillating tissue and define the mechanisms by which they promote the perpetuation of AF. These findings present a novel theoretical framework for understanding treatment of multi-wavelet reentry driven AF and provide a set of testable predictions that can serve to guide the design of future experimental studies aimed at advancing the rational design of patient-specific ablation sets for treating AF

    Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology

    Get PDF
    The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals
    corecore