845 research outputs found

    A two-stage solution approach for the Directed Rural Postman Problem with Turn Penalties

    Get PDF
    In this paper, we consider the Directed Rural Postman Problem with Turn Penalties (DRPP-TP). A solution is a tour that traverses all required arcs of the graph. The total cost of the tour is the sum of the lengths of the traversed arcs plus the penalties associated with the turns. One solution approach involves transforming the arc routing problem into an equivalent node routing problem. An alternative direct approach (without graph transformation) that involves two stages has been proposed in the literature. In the first part of this paper, we investigate the applicability of the direct approach. We identify several characteristics of the input instance that make this approach effective and present several limitations of this approach. In the second part of this paper, we describe an integer linear program that is combined with a local search algorithm. This combination produces high-quality solutions to the DRPP-TP in a reasonable amount of computing time. (C) 2018 Published by Elsevier B.V

    Efficient routing of snow removal vehicles

    Get PDF
    This research addresses the problem of finding a minimum cost set of routes for vehicles in a road network subject to some constraints. Extensions, such as multiple service requirements, and mixed networks have been considered. Variations of this problem exist in many practical applications such as snow removal, refuse collection, mail delivery, etc. An exact algorithm was developed using integer programming to solve small size problems. Since the problem is NP-hard, a heuristic algorithm needs to be developed. An algorithm was developed based on the Greedy Randomized Adaptive Search Procedure (GRASP) heuristic, in which each replication consists of applying a construction heuristic to find feasible and good quality solutions, followed by a local search heuristic. A simulated annealing heuristic was developed to improve the solutions obtained from the construction heuristic. The best overall solution was selected from the results of several replications. The heuristic was tested on four sets of problem instances (total of 115 instances) obtained from the literature. The simulated annealing heuristic was able to achieve average improvements of up to 26.36% over the construction results on these problem instances. The results obtained with the developed heuristic were compared to the results obtained with recent heuristics developed by other authors. The developed heuristic improved the best-known solution found by other authors on 18 of the 115 instances and matched the results on 89 of those instances. It worked specially better with larger problems. The average deviations to known lower bounds for all four datasets were found to range between 0.21 and 2.61%

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    Solving an Urban Waste Collection Problem Using Ants Heuristics

    Get PDF
    This paper describes the methodology that we have applied for the solution of an urban waste collection problem in the municipality of Sant Boi de Llobregat, within the metropolitan area of Barcelona (Spain). The basic nature of the considered problem is that of a capacitated arc routing problem, although it has several specific characteristics, mainly derived from trafic regulations. We present the model that we have built for the problem, which results after an appropriate transformation of the problem into a node routing one. We also present the ant colonies heuristics that we have used to obtain the solutions to the problem. These combine constructive methods, based on nearest neighbor and on nearest insertion, with a local search that explores various neighborhoods. The application of the proposed methods gives results that improve considerably the ones that were previously used in the municipality.Peer Reviewe

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberån, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577

    Modeling and Solving Arc Routing Problems in Street Sweeping and Snow Plowing

    Get PDF
    In arc routing problems, the goal is to determine an optimal path, or set of paths, that traverse a required subset of arcs on a graph with respect to a set of constraints and objective function. The Chinese Postman Problem (CPP) forms the basis for many arc routing problems. Let graph G =(V,A), where V is a set of vertices and A = {(i,j) | i,j in V} is a set of arcs that each connect exactly two vertices, each with its own cost of traversal cij. The objective of the CPP is to construct a least cost path that traverses each arc in A at least once. There are many practical applications for variants of the CPP, including winter street maintenance, and street sweeping that incorporate: [Rural Instances] Rural Postman Problems (RPP) stipulate that only a subset AR⊂AA_R \subset A require traversal, allowing for non-servicing traversal on the rest of the graph. In the context of street sweeping, a street sweeper isn't responsible for sweeping all the streets. [Windy Graphs] In the CPP, the cost of traversal of an arc is the same, regardless of the direction of traversal. In the Windy Postman Problem (WPP), the cost of traversal is asymmetric. That is, it is possible for cij not equal cji. In the context of snow plowing, it is harder to plow uphill than downhill. [Multi-Vehicle] Instead of a single vehicle with a single tour, multiple tours are found for multiple vehicles. This is often accompanied with an objective function that seeks to minimize the cost of the largest cost route. This is motivated by practical applications, which seek to balance the cost of each route. In the case where route cost is measured in time, route balancing minimizes, for example, paid overtime. [Turn Penalties] UPS reported that it saved three million gallons of gasoline annually by avoiding unnecessary left-hand turns, which take longer to perform than going straight or turning right. Instances with turn penalties incorporate costs of turning, in addition to costs of traversal. The Windy Postman Problem (WPP) incorporates windy graphs and the Rural Postman Problem (RPP) incorporates rural instances. The RPP can be extended to include turn penalties (RPPTP). The Windy Rural Postman Problem (WRPP) incorporates instances that are both windy and rural. The WRPP can be extended to the MM k-WRPP which adds k plows. In this dissertation, we extend these variants to new problems with new problem attributes that are practically motivated. Our new attributes are listed below. [Multi-Period] The CPP solves for a single route, which can be interpreted to be traversed in a single day. It is possible that the set of required arcs is too long to service in a single day and therefore must be split among multiple days. In this case, we need to decide which day to assign service to each arc, before routing can take place. [Downhill Instances] In street snow plowing, it is faster to deadhead (traverse without servicing) a street rather than plowing it. In this case, there are different costs for deadheading and plowing a street. Moreover, it takes longer to plow uphill, resulting in four costs: plowing uphill, plowing downhill, deadheading uphill, and deadheading downhill. [Precedence] When considering downhill instances, the snow may be so deep that it is impossible for a snowplow to deadhead a street before the street is plowed. In this dissertation we present a variety of heuristics to solve these problems, all adaptations of the concept of cycle permutation based on Euclidean cycle decomposition. To our knowledge, the use of moving or permuting sub-cycles as a way to change and improve a Eulerian cycle is novel and we show that it is very robust at improving solutions

    Optimisation de tournées de véhicules en viabilité hivernale

    Get PDF
    RÉSUMÉ : Cette thĂšse dĂ©veloppe des outils mathĂ©matiques et informatiques pour amĂ©liorer les opĂ©rations de viabilitĂ© hivernale. En particulier, la confection des tournĂ©es de dĂ©neigement est traitĂ©e comme un problĂšme de tournĂ©es sur les arcs avec plusieurs contraintes. Une mĂ©taheuristique est d’abord dĂ©veloppĂ©e pour la confection de ces tournĂ©es. Par la suite, des modifications majeures sont apportĂ©es Ă  cet algorithme pour tenir compte des caractĂ©ristiques spĂ©cifiques aux problĂšmes de tournĂ©es sur les arcs (arc routing problem) (ARP) sur des rĂ©seaux routiers rĂ©els. Finalement, un second problĂšme combinant les tournĂ©es de dĂ©neigement et d’épandage avec la mise en commun de certains vĂ©hicules pour les opĂ©rations est traitĂ©. La solution dĂ©veloppĂ©e permet de tirer parti des caractĂ©ristiques de chaque vĂ©hicule. Tout au long de la thĂšse, un accent particulier est portĂ© sur l’utilisation des donnĂ©es rĂ©elles ainsi que sur le dĂ©veloppement de mĂ©thodes pour faciliter l’importation et l’exportation de ces donnĂ©es. Les travaux entourant cette thĂšse dĂ©butent avec la confection de tournĂ©es de dĂ©neigement pour une ville au QuĂ©bec, soit Dolbeau-Mistassini (DM). De nombreux problĂšmes ont Ă©tĂ© rencontrĂ©s avec l’utilisation d’une mĂ©thode tirĂ©e de la littĂ©rature. Parmi ceux-ci, on compte : — de nombreux demi-tours difficiles Ă  exĂ©cuter par les vĂ©hicules ; — le faible respect des prioritĂ©s accordĂ©es aux rues Ă  l’échelle du rĂ©seau ; — de nombreux vĂ©hicules parcourent de longues distances pour se rendre dans les coins reculĂ©s du rĂ©seau ; — le dĂ©sĂ©quilibre des tĂąches de travail en raison des diffĂ©rentes vitesses d’opĂ©ration des vĂ©hicules ; — le fait que la mĂ©thode ne tient pas compte des ruelles qui peuvent ĂȘtre traitĂ©es dans une direction ou dans l’autre en un seul passage. À la suite de nombreux ajustements manuels pour corriger les tournĂ©es obtenues, force a Ă©tĂ© de constater que des amĂ©liorations pouvaient ĂȘtre apportĂ©es Ă  ce type de mĂ©thode. Les travaux concernant la premiĂšre contribution de cette thĂšse ont donc portĂ© sur le dĂ©veloppement d’une mĂ©thode de crĂ©ation de tournĂ©es de dĂ©neigement. En raison du grand nombre de variables et de contraintes considĂ©rĂ©es dans le problĂšme, le choix s’est portĂ© sur une mĂ©thode heuristique. Ce type de mĂ©thode offre un bon Ă©quilibre entre le temps de traitement et la qualitĂ© des solutions obtenues. Plus prĂ©cisĂ©ment, le choix s’est arrĂȘtĂ© sur une mĂ©taheuristique de type algorithme de recherche Ă  voisinage adaptatif large (adaptive large neighborhood search) (ALNS), en raison du succĂšs remportĂ© rĂ©cemment par ce type de mĂ©thode. Le premier article a permis de constater que l’algorithme dĂ©veloppĂ© permet de crĂ©er des tournĂ©es pour les vĂ©hicules de dĂ©neigement. Les contraintes suivantes sont respectĂ©es : Ă©quilibrage des tournĂ©es, couverture partielle du rĂ©seau, vitesses hĂ©tĂ©rogĂšnes, restrictions de virages, restrictions rue/vĂ©hicule et hiĂ©rarchie du rĂ©seau. Pour la deuxiĂšme contribution de thĂšse, le problĂšme a d’abord Ă©tĂ© formalisĂ© par l’intermĂ©diaire d’un programme linĂ©aire en nombres entiers (mixed integer programming) (MIP). Le problĂšme a Ă©tĂ© formulĂ© comme un problĂšme des k-postiers ruraux avec objectif minmax (min-max k-vehicles rural postman problem) (MM K-RPP) avec hiĂ©rarchies, pĂ©nalitĂ©s sur virages, vitesses d’opĂ©ration hĂ©tĂ©rogĂšnes et tournĂ©es ouvertes sur un graphe mixte. Tel qu’anticipĂ©, la rĂ©solution devient rapidement impossible Ă  traiter avec un solveur commercial en utilisant seulement 20 segments de rue. Il a Ă©tĂ© dĂ©cidĂ© de poursuivre l’approfondissement de l’algorithme dĂ©veloppĂ© en premiĂšre partie. Cette dĂ©cision a Ă©tĂ© prise notamment en raison du trĂšs long temps de traitement qui rĂ©duit l’utilitĂ© du premier algorithme. Cette dĂ©cision repose aussi sur le fait que visuellement, on constate que les tournĂ©es obtenues peuvent ĂȘtre amĂ©liorĂ©es. Dans cette optique, une collaboration a Ă©tĂ© initiĂ©e avec messieurs Fabien LehuĂ©dĂ© et Olivier PĂ©ton du laboratoire des sciences du numĂ©rique de Nantes (LS2N) Ă  IMT Atlantique. Leur expertise avec la mĂ©thode ALNS a effectivement permis d’amĂ©liorer grandement les rĂ©sultats obtenus. Parmi les amĂ©liorations apportĂ©es, on note une transformation du rĂ©seau permettant de tenir compte des pĂ©nalitĂ©s sur virages lors du calcul des plus courts chemins. Cette transformation permet Ă©galement de mieux prendre en compte les ruelles qui requiĂšrent un seul passage dans une direction ou dans l’autre. De plus, la possibilitĂ© d’appliquer plusieurs fois un opĂ©rateur de destruction avant de passer Ă  la construction est ajoutĂ©e. Cette contribution a Ă©galement Ă©tĂ© l’occasion de dĂ©velopper et tester de nouveaux opĂ©rateurs de voisinage, dĂ©velopper une mĂ©thode de groupement des arcs et revoir et simplifier le code de la mĂ©taheuristique. L’algorithme a Ă©tĂ© appliquĂ© Ă  la premiĂšre Ă©tude de cas ainsi qu’a deux nouvelles Ă©tudes de cas, Baie-Comeau (BC) et Plateau-Mont-Royal (PMR). Des tests ont Ă©galement Ă©tĂ© exĂ©cutĂ©s en comparant les nouvelles tournĂ©es obtenues Ă  des tournĂ©es conçues quelques annĂ©es plus tĂŽt ainsi qu’aux rĂ©sultats obtenus par un solveur commercial. Les rĂ©sultats obtenus dĂ©montrent que la mĂ©thodologie amĂ©liore les tournĂ©es conçues prĂ©cĂ©demment. Il est aussi possible de conclure que la mĂ©thode de groupage des arcs amĂ©liore la qualitĂ© des solutions obtenues et l’efficacitĂ© des nouveaux opĂ©rateurs dĂ©veloppĂ©s varie selon le rĂ©seau utilisĂ©. Pour la troisiĂšme contribution, nous sommes revenus sur le cas d’étude initial tel que dĂ©crit par les intervenants de la premiĂšre Ă©tude de cas. Il a Ă©tĂ© dit que les charges de travail doivent ĂȘtre Ă©quilibrĂ©es, mais que certains vĂ©hicules doivent Ă©galement Ă©pandre des fondants ou des abrasifs en plus de dĂ©neiger. Pour tenir compte de cette contrainte, certaines tournĂ©es avaient dĂ©libĂ©rĂ©ment Ă©tĂ© gardĂ©es plus courtes dans les premiĂšres solutions. Pour le troisiĂšme article, il a Ă©tĂ© dĂ©cidĂ© de traiter cette problĂ©matique de front. Ce qu’il faut savoir est que certains vĂ©hicules sont Ă©quipĂ©s pour l’épandage et le dĂ©neigement alors que d’autres sont Ă©quipĂ©s pour le dĂ©neigement seulement. Lorsque les premiers traitent un segment de rue, ils exĂ©cutent les deux opĂ©rations simultanĂ©ment. Lorsque les deuxiĂšmes traitent un segment de rue, il faut planifier un second passage par les premiers vĂ©hicules pour qu’ils puissent Ă©pandre des fondants ou des abrasifs. L’algorithme dĂ©veloppĂ© prĂ©cĂ©demment a donc Ă©tĂ© modifiĂ© dans cette optique. En plus, la considĂ©ration des contraintes de restrictions rue/vĂ©hicule a Ă©tĂ© ajoutĂ©e dans l’algorithme. Les rĂ©sultats dĂ©montrent que l’algorithme permet effectivement de concevoir des tournĂ©es qui respectent les contraintes de la nouvelle Ă©tude de cas. Cet outil permet donc de tirer profit de l’interaction entre les divers types de vĂ©hicules. La contribution souligne Ă©galement l’utilitĂ© d’un tel outil pour supporter l’analyse des besoins justifiant l’achat de nouveaux vĂ©hicules. En parallĂšle aux dĂ©veloppements algorithmiques, des mĂ©thodes d’importation et d’exportation des donnĂ©es provenant des cas d’étude rĂ©els sont aussi dĂ©veloppĂ©es. DĂšs le dĂ©part, il a Ă©tĂ© choisi d’utiliser des fichiers de type Shapefile comme source de donnĂ©es en raison de sa grande disponibilitĂ© et de la compatibilitĂ© avec les systĂšme d’information gĂ©ographique (SIG). Une mĂ©thode pour passer du rĂ©seau gĂ©ographique vers un rĂ©seau mathĂ©matique a donc Ă©tĂ© amĂ©liorĂ©e au cours des travaux. Alors qu’au dĂ©but des travaux de la thĂšse, il fallait passer par un chiffrier Microsoft ExcelTM pour ensuite importer les donnĂ©es dans le code, Ă  la fin, une mĂ©thode automatisĂ©e permet l’importation directe Ă  partir des fichiers Shapefiles vers le code de la mĂ©taheuristique. Quant aux rĂ©sultats obtenus, ils furent obtenus dans les premiĂšres Ă©tapes sous forment de reprĂ©sentations gĂ©ographiques dans un SIG ainsi que des feuilles d’instructions indiquant les Ă©tapes, coin de rue par coin de rue, aux opĂ©rateurs de vĂ©hicules. De ce cĂŽtĂ©, les dĂ©veloppements ont permis d’obtenir des fichiers de type KML. Ce type de fichier est compatible avec plusieurs logiciels et applications, dont Google EarthviewTM et des applications de guidage routier sur des appareils mobiles.----------ABSTRACT : In this thesis, we develop mathematical and computerized tools to improve winter viability operations. More precisely, the snow routing design problem is treated as an problĂšme de tournĂ©e sur les arcs (arc routing problem) (ARP). In a first effort to solve the problem, a metaheuristic procedure is designed. Then, some major modifications are made to the algorithm to improve the consideration of specific characteristics of real road networks. Finally, a second problem combining the routing of the snowplow and the spreading vehicles are addressed. The objective is to fully take advantage of the characteristics of the different type of vehicles. In parallel with the algorithmic development, this thesis also develops some methodologies to facilitate the importation and exportation of the real world data. Works concerning this thesis were initiated with a mandate to design snowplow routes for a city in the province of QuĂ©bec, namely DM. The problem was addressed by using a methodology found in the literature, however, several difficulties were encountered. Among others: — the routes contained several U-turns which are difficult to perform by the snow plowing vehicles; — little consideration of the priorities at the network level; — several vehicles have to travel to some remote streets in the same sector of the city where we would expect only one vehicle to go; — unbalanced sectors due to the different speeds of operation of the vehicles; — no consideration for back alleys that needs to be serviced only once in either direction. In respond to these problems, several manual modifications of the routes were undertaken to make them feasible. It was found that the methodology fails to solve the problem as it is encountered. Therefore, works concerning the first contribution of this thesis focused on the development of a methodology to design snowplow routing. Due to numerous variables and constraints, it was decided to develop a metaheuristic algorithm. This type of methodology offers a good balance between runtime and the quality of the solution obtained. In particular, an ALNS is selected because of its recent success cited in the literature. Thus, the first article concludes that the algorithm can design snowplow routing. The following constraints are considered: workload balance, partial area coverage, heterogeneous vehicle speeds, road/vehicle dependencies, network hierarchies and turn restrictions. In the second contribution of this thesis, the problem was modeled as a mixed integer program. It is formulated as a min-max k-rural postmen problem with hierarchies, turn penalties, open tours and heterogeneous speed on a mixed graph. As expected, the formulation is intractable even for a number of arcs as low as 20. It was then decided to pursue the development of the ALNS algorithm. This decision was taken considering the long runtime of the first algorithm and the fact that the routes obtained can be visually improved. A collaboration with Fabien LehuĂ©dĂ© and Olivier PĂ©ton from the Laboratoire des Sciences du NumĂ©rique de Nantes (LS2N), IMT Atlantique was undertaken. Their expertise with ALNS greatly helped to improve the results obtained. Among other improvements brought to the algorithm, one can cite the transformation of the graph which allows to better take into account turn penalties during the computation of the shortest paths. This transformation also allows to better take into account the back alleys which only need one service in either direction. This contribution also allowed to develop and test new neighborhood operators and an arc grouping methodology. Both of these innovations improve the quality of the solutions obtained. However the efficiency of the new operators varies with the network. For the third contribution, we took back the case study as it was described by the collaborator in DM. It was said that the workload needs to be balanced among the vehicles. However some vehicles must also perform winter spreading in addition to plowing. For the first set of routes produced, some of the routes were deliberately left with a lower workload to allow them to perform winter spreading. For the third article, it was decided to consider the spreading and the plowing directly during the construction and the improvement steps. Thus this problem was tackled more directly in the third article. It must be noted that some vehicles are equipped to perform both winter spreading and snow plowing and some others can only perform plowing. When the former service a street, they can perform both plowing and spreading at the same time. When the latter service a street, a second passage is required to spread salt or abrasives. The algorithm developed for the second contribution was then adapted for this new problem. Moreover, the street/vehicle restriction constraints were also added. The result shows that the algorithm can produce a set of routes respecting the constraints of the new problem. It can take advantage of the interaction between the various types of vehicles. The article also shows that such tool can be beneficial in analyzing the requirements for new vehicles. In parallel with the development of the algorithms, data importation and exportation techniques from real road networks are also developed. It was chosen to use Shapefiles because of its good relative availability and because of its compatibility with Geographic Information System (GIS). A method to transfer from a geographical to a mathematical network is improved during the thesis. At the beginning, a Microsoft ExcelTM datasheet is used to transfer the data from the GIS to the metaheuristic. At the end, it is possible to fetch the data directly from the Shapefiles to the metaheuristic. As for the results obtained, at the beginning, they were provided in the form of a Shapefile for visualization and indications on sheets of paper for the operators. At the end, the results can be exported to the KML format. This type of file is compatible with several software such as Google EarthviewTM and application Global Positioning System (GPS) applications on mobile devices

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges
    • 

    corecore