11,594 research outputs found

    An evolutionary game theoretic approach for stable clustering in vehicular ad hoc networks (VANETs)

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Finding and maintaining efficient routes for data dissemination in VANETs is a very challenging problem due to the highly dynamic characteristics of VANETs. Clustering in Vehicular Ad hoc Networks (VANETs) is one of the control schemes used to provide efficient and stable routes for data dissemination in VANETs. The rapid changes in the topology of VANETs have instigated frequent cluster formation and reorganization which has seriously affected route stability in Vehicular Ad hoc Networks. Considerable work has been reported into the development of clustering protocols while keeping in view the highly dynamic topology of VANETs, but the objective of imbuing the system with a stable underlay is still in the infant stage. The analytical models used for studying the behaviour of Vehicular Ad hoc Networks have been scarced due to distributed, highly dynamic and self-organizing characteristics of VANETs. In contrast, game theory is emerging as a novel analytical tool that can be used to tackle the technical challenges concerning the current and future problems in wireless and communication networks. A two-layer novel Evolutionary Game Theoretic (EGT) framework is presented to solve the problem of in-stable clustering in VANETs. The aim of this research is to model the interactions of vehicular nodes in VANETs, to retain a stable clustering state of the network with evolutionary equilibrium as the solution of this game. A stable clustering scenario in VANETs is modelled with a reinforcement learning approach to reach the solution of an evolutionary equilibrium. Performance of the proposed “evolutionary game based clustering algorithm” is empirically investigated in different cases and the simulation results show that the system retains cluster stability

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201
    • …
    corecore