33,520 research outputs found

    An Information-Theoretic Test for Dependence with an Application to the Temporal Structure of Stock Returns

    Full text link
    Information theory provides ideas for conceptualising information and measuring relationships between objects. It has found wide application in the sciences, but economics and finance have made surprisingly little use of it. We show that time series data can usefully be studied as information -- by noting the relationship between statistical redundancy and dependence, we are able to use the results of information theory to construct a test for joint dependence of random variables. The test is in the same spirit of those developed by Ryabko and Astola (2005, 2006b,a), but differs from these in that we add extra randomness to the original stochatic process. It uses data compression to estimate the entropy rate of a stochastic process, which allows it to measure dependence among sets of random variables, as opposed to the existing econometric literature that uses entropy and finds itself restricted to pairwise tests of dependence. We show how serial dependence may be detected in S&P500 and PSI20 stock returns over different sample periods and frequencies. We apply the test to synthetic data to judge its ability to recover known temporal dependence structures.Comment: 22 pages, 7 figure

    Point estimation with exponentially tilted empirical likelihood

    Full text link
    Parameters defined via general estimating equations (GEE) can be estimated by maximizing the empirical likelihood (EL). Newey and Smith [Econometrica 72 (2004) 219--255] have recently shown that this EL estimator exhibits desirable higher-order asymptotic properties, namely, that its O(n−1)O(n^{-1}) bias is small and that bias-corrected EL is higher-order efficient. Although EL possesses these properties when the model is correctly specified, this paper shows that, in the presence of model misspecification, EL may cease to be root n convergent when the functions defining the moment conditions are unbounded (even when their expectations are bounded). In contrast, the related exponential tilting (ET) estimator avoids this problem. This paper shows that the ET and EL estimators can be naturally combined to yield an estimator called exponentially tilted empirical likelihood (ETEL) exhibiting the same O(n−1)O(n^{-1}) bias and the same O(n−2)O(n^{-2}) variance as EL, while maintaining root n convergence under model misspecification.Comment: Published at http://dx.doi.org/10.1214/009053606000001208 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A statistical physics perspective on criticality in financial markets

    Full text link
    Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems but few statistically founded evidence have been given. Through a data-based methodology and comparison to simulations inspired by statistical physics of complex systems, we show that the Dow Jones and indices sets are not rigorously critical. However, financial systems are closer to the criticality in the crash neighborhood.Comment: 23 pages, 19 figure
    • …
    corecore