257 research outputs found

    Industrial water management by multiobjective optimization: from individual to collective solution through eco-industrial parks.

    Get PDF
    Industrial water networks are designed in the first part by a multiobjective optimization strategy, where fresh water, regenerated water flow rates as well as the number of network connections (integer variables) are minimized. The problem is formulated as a Mixed-Integer Linear Programming problem (MILP) and solved by the ε-constraint method. The linearization of the problem is based on the necessary conditions of optimality defined by Savelski and Bagajewicz (2000). The approach is validated on a published example involving only one contaminant. In the second part the MILP strategy is implemented for designing an Eco-Industrial Park (EIP) involving three companies. Three scenarios are considered: EIP without regeneration unit, EIP where each company owns its regeneration unit and EIP where the three companies share regeneration unit(s). Three possible regeneration units can be chosen, and the MILP is solved under two kinds of conditions: limited or unlimited number of connections, same or different gains for each company. All these cases are compared according to the global equivalent cost expressed in fresh water and taking also into account the network complexity through the number of connections. The best EIP solution for the three companies can be determined

    On the use of reference points for the biobjective Inventory Routing Problem

    Full text link
    The article presents a study on the biobjective inventory routing problem. Contrary to most previous research, the problem is treated as a true multi-objective optimization problem, with the goal of identifying Pareto-optimal solutions. Due to the hardness of the problem at hand, a reference point based optimization approach is presented and implemented into an optimization and decision support system, which allows for the computation of a true subset of the optimal outcomes. Experimental investigation involving local search metaheuristics are conducted on benchmark data, and numerical results are reported and analyzed

    Minimizing water and energy consumptions in water and heat exchange networks.

    Get PDF
    This study presents a mathematical programming formulation for the design of water and heat exchangers networks based on a two-step methodology. First, an MILP (mixed integer linear programming) procedure is used to solve the water and energy allocation problem regarding several objectives. The first step of the design method involves four criteria to be taken into account., ie, fresh water consumption (F1), energy consumption (F2), interconnection number (F3) and number of heat exchangers (F4). The multiobjective optimization Min [F1, F2] is solved by the so-called ɛ-constraint method and leads to several Pareto fronts for fixed numbers of connections and heat exchangers. The second step consists in improving the best results of the first phase with energy integration into the water network. This stage is solved by an MINLP procedure in order to minimize an objective cost function. Two examples reported in the dedicated literature serve as test bench cases to apply the proposed two-step approach. The results show that the simultaneous consideration of the abovementioned objectives is more realistic than the only minimization of fresh water consumption. Indeed, the optimal network does not necessarily correspond to the structure that reaches the fresh water target. For a real paper mill plant, energy consumption decreases of almost 20% as compared with previous studies

    Two-phase strategies for the bi-objective minimum spanning tree problem

    Get PDF
    This paper presents a new two-phase algorithm for the bi-objective minimum spanning tree (BMST) prob-lem. In the first phase, it computes the extreme supported efficient solutions resorting to both mathematicalprogramming and algorithmic approaches, while the second phase is devoted to obtaining the remaining ef-ficient solutions (non-extreme supported and non-supported). This latter phase is based on a new recursiveprocedure capable of generating all the spanning trees of a connected graph through edge interchanges basedon increasing evaluation of non-zero reduced costs of associated weighted linear programs. Such a procedureexploits a common property of a wider class of problems to which the minimum spanning tree (MST) prob-lem belongs, that is the spanning tree structure of its basic feasible solutions. Computational experimentsare conducted on different families of graphs and with different types of cost. These results show that thisnew two-phase algorithm is correct, very easy to implement and it allows one to extract conclusions on thedifficulty of finding the entire set of Pareto solutions of the BMST problem depending on the graph topologyand the possible correlation of the edge cost

    Minimization Problems in Signalized Road Networks

    Get PDF
    In this study, we present a bilevel programming model in which upper level is defined as a biobjective problem and the lower level is considered as a stochastic user equilibrium assignment problem. It is clear that the biobjective problem has two objectives: the first maximizes the reserve capacity whereas the second minimizes performance index of a road network. We use a weighted-sum method to determine the Pareto optimal solutions of the biobjective problem by applying normalization approach for making the objective functions dimensionless. Following, a differential evolution based heuristic solution algorithm is introduced to overcome the problem presented by use of biobjective bilevel programming model. The first numerical test is conducted on two-junction network in order to represent the effect of the weighting on the solution of combined reserve capacity maximization and delay minimization problem. Allsop & Charlesworth's network, which is a widely preferred road network in the literature, is selected for the second numerical application in order to present the applicability of the proposed model on a medium-sized signalized road network. Results support authorities who should usually make a choice between two conflicting issues, namely, reserve capacity maximization and delay minimization. C1 [Baskan, Ozgur; Ceylan, Huseyin] Pamukkale Univ, Dept Civil Engn, Fac Engn, TR-20160 Denizli, Turkey. [Ozan, Cenk] Adnan Menderes Univ, Dept Civil Engn, Fac Engn, TR-09100 Aydin, Turkey. Document type: Articl

    A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem

    Get PDF
    We present a column generation algorithm for solving the bi-objective multi-commodity minimum cost flow problem. This method is based on the bi-objective simplex method and Dantzig–Wolfe decomposition. The method is initialised by optimising the problem with respect to the first objective, a single objective multi-commodity flow problem, which is solved using Dantzig–Wolfe decomposition. Then, similar to the bi-objective simplex method, our algorithm iteratively moves from one non-dominated extreme point to the next one by finding entering variables with the maximum ratio of improvement of the second objective over deterioration of the first objective. Our method reformulates the problem into a bi-objective master problem over a set of capacity constraints and several single objective linear fractional sub-problems each over a set of network flow conservation constraints. The master problem iteratively updates cost coefficients for the fractional sub-problems. Based on these cost coefficients an optimal solution of each sub-problem is obtained. The solution with the best ratio objective value out of all sub-problems represents the entering variable for the master basis. The algorithm terminates when there is no entering variable which can improve the second objective by deteriorating the first objective. This implies that all non-dominated extreme points of the original problem are obtained. We report on the performance of the algorithm on several directed bi-objective network instances with different characteristics and different numbers of commodities

    Solving the hazmat transport network design problem

    Get PDF
    In this paper, we consider the problem of network design for hazardous material transportation where the government designates a network, and the carriers choose the routes on the network. We model the problem as a bilevel network flow formulation and analyze the bilevel design problem by comparing it to three other decision scenarios. The bilevel model is difficult to solve and may be ill-posed. We propose a heuristic solution method that always finds a stable solution. The heuristic exploits the network flow structure at both levels to overcome the difficulty and instability of the bilevel integer programming model. Testing on real data shows that the linearization of the bilevel model fails to find stable solutions and that the heuristic finds lower risk networks in less time. Further testing on random instances shows that the heuristically designed networks achieve significant risk reduction over single-level models. The risk is very close to the least risk possible. However, this reduction in risk comes with a significant increase in cost. We extend the bilevel model to account for the cost/risk trade-off by including cost in the first-level objective. The biobjective-bilevel model is a rich decision-support tool that allows for the generation of many good solutions to the design problem. © 2006 Elsevier Ltd. All rights reserved

    Corridor Location: Generating Competitive and Efficient Route Alternatives

    Get PDF
    The problem of transmission line corridor location can be considered, at best, a "wicked" public systems decision problem. It requires the consideration of numerous objectives while balancing the priorities of a variety of stakeholders, and designers should be prepared to develop diverse non-inferior route alternatives that must be defensible under the scrutiny of a public forum. Political elements aside, the underlying geographical computational problems that must be solved to provide a set of high quality alternatives are no less easy, as they require solving difficult spatial optimization problems on massive GIS terrain-based raster data sets.Transmission line siting methodologies have previously been developed to guide designers in this endeavor, but close scrutiny of these methodologies show that there are many shortcomings with their approaches. The main goal of this dissertation is to take a fresh look at the process of corridor location, and develop a set of algorithms that compute path alternatives using a foundation of solid geographical theory in order to offer designers better tools for developing quality alternatives that consider the entire spectrum of viable solutions. And just as importantly, as data sets become increasingly massive and present challenging computational elements, it is important that algorithms be efficient and able to take advantage of parallel computing resources.A common approach to simplify a problem with numerous objectives is to combine the cost layers into a composite a priori weighted single-objective raster grid. This dissertation examines new methods used for determining a spatially diverse set of near-optimal alternatives, and develops parallel computing techniques for brute-force near-optimal path enumeration, as well as more elegant methods that take advantage of the hierarchical structure of the underlying path-tree computation to select sets of spatially diverse near optimal paths.Another approach for corridor location is to simultaneously consider all objectives to determine the set of Pareto-optimal solutions between the objectives. This amounts to solving a discrete multi-objective shortest path problem, which is considered to be NP-Hard for computing the full set of non-inferior solutions. Given the difficulty of solving for the complete Pareto-optimal set, this dissertation develops an approximation heuristic to compute path sets that are nearly exact-optimal in a fraction of the time when compared to exact algorithms. This method is then applied as an upper bound to an exact enumerative approach, resulting in significant performance speedups. But as analytic computing continues to moved toward distributed clusters, it is important to optimize algorithms to take full advantage parallel computing. To that extent, this dissertation develops a scalable parallel framework that efficiently solves for the supported/convex solutions of a biobjective shortest path problem. This framework is equally applicable to other biobjective network optimization problems, providing a powerful tool for solving the next generation of location analysis and geographical optimization models
    corecore