1,090 research outputs found

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Perfect sampling algorithm for Schur processes

    Full text link
    We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing conditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e. it reads a minimal number of random bits as an input). The algorithm encompasses previous growth procedures for special Schur processes related to the primal and dual RSK algorithm, as well as the famous domino shuffling algorithm for domino tilings of the Aztec diamond. It can be easily adapted to deal with symmetric Schur processes and general Schur processes involving infinitely many parameters. It is more concrete and easier to implement than Borodin's algorithm, and it is entropy optimal. At a technical level, it relies on unified bijective proofs of the different types of Cauchy and Littlewood identities for Schur functions, and on an adaptation of Fomin's growth diagram description of the RSK algorithm to that setting. Simulations performed with this algorithm suggest interesting limit shape phenomena for the corresponding tiling models, some of which are new.Comment: 26 pages, 19 figures (v3: final version, corrected a few misprints present in v2

    Dynamics of nodal points and the nodal count on a family of quantum graphs

    Full text link
    We investigate the properties of the zeros of the eigenfunctions on quantum graphs (metric graphs with a Schr\"odinger-type differential operator). Using tools such as scattering approach and eigenvalue interlacing inequalities we derive several formulas relating the number of the zeros of the n-th eigenfunction to the spectrum of the graph and of some of its subgraphs. In a special case of the so-called dihedral graph we prove an explicit formula that only uses the lengths of the edges, entirely bypassing the information about the graph's eigenvalues. The results are explained from the point of view of the dynamics of zeros of the solutions to the scattering problem.Comment: 34 pages, 12 figure
    corecore