1,550 research outputs found

    A cyber-physical system for smart healthcare

    Get PDF
    Abstract: The increasing number of patients in hospitals is becoming a serious concern in most countries owing to the significantly associated implications for resources such as staff and budget shortages. This problem has prompted researchers to investigate low-cost alternative systems that may assist medical staff with monitoring and caring for patients. In view of the recent widespread availability of cost-effective internet of things (IoT) technologies such as ZigBee, WiFi and sensors integrated into cyber-physical systems, there is the potential for deployment as different topologies in applications such as patient diagnoses and remote patient monitoring...M.Tech. (Electrical and Electronic Engineering Technology

    Activity Recognition for IoT Devices Using Fuzzy Spatio-Temporal Features as Environmental Sensor Fusion

    Get PDF
    The IoT describes a development field where new approaches and trends are in constant change. In this scenario, new devices and sensors are offering higher precision in everyday life in an increasingly less invasive way. In this work, we propose the use of spatial-temporal features by means of fuzzy logic as a general descriptor for heterogeneous sensors. This fuzzy sensor representation is highly efficient and enables devices with low computing power to develop learning and evaluation tasks in activity recognition using light and efficient classifiers. To show the methodology's potential in real applications, we deploy an intelligent environment where new UWB location devices, inertial objects, wearable devices, and binary sensors are connected with each other and describe daily human activities. We then apply the proposed fuzzy logic-based methodology to obtain spatial-temporal features to fuse the data from the heterogeneous sensor devices. A case study developed in the UJAmISmart Lab of the University of Jaen (Jaen, Spain) shows the encouraging performance of the methodology when recognizing the activity of an inhabitant using efficient classifiers

    Choosing Wearable Internet of Things Devices for Managing Safety in Construction Using Fuzzy Analytic Hierarchy Process as a Decision Support System

    Get PDF
    Many safety and health risks are faced daily by workers in the field of construction. There is unpredictability and risk embedded in the job and work environment. When compared with other industries, the construction industry has one of the highest numbers of worker injuries, illnesses, fatalities, and near-misses. To eliminate these risky events and make worker performance more predictable, new safety technologies such as the Internet of Things (IoT) and Wearable Sensing Devices (WSD) have been highlighted as effective safety systems. Some of these Wearable Internet of Things (WIoT) and sensory devices are already being used in other industries to observe and collect crucial data for worker safety in the field. However, due to limited information and implementation of these devices in the construction field, Wearable Sensing Devices (WSD) and Internet of Things (IoT) are still relatively underdeveloped and lacking. The main goal of the research is to develop a conceptual decision-making framework that managers and other appropriate personnel can use to select suitable Wearable Internet of Things (WIoT) devices for proper application/ implementation in the construction industry. The research involves a literature review on the aforementioned devices and the development and demonstration of a decision-making framework using the Fuzzy Analytic Hierarchy Process (FAHP)

    An Internet of Things and Fuzzy Markup Language Based Approach to Prevent the Risk of Falling Object Accidents in the Execution Phase of Construction Projects

    Get PDF
    The Internet of Things (IoT) paradigm is establishing itself as a technology to improve data acquisition and information management in the construction field. It is consolidating as an emerging technology in all phases of the life cycle of projects and specifically in the execution phase of a construction project. One of the fundamental tasks in this phase is related to Health and Safety Management since the accident rate in this sector is very high compared to other phases or even sectors. For example, one of the most critical risks is falling objects due to the peculiarities of the construction process. Therefore, the integration of both technology and safety expert knowledge in this task is a key issue including ubiquitous computing, real-time decision capacity and expert knowledge management from risks with imprecise data. Starting from this vision, the goal of this paper is to introduce an IoT infrastructure integrated with JFML, an open-source library for Fuzzy Logic Systems according to the IEEE Std 1855-2016, to support imprecise experts’ decision making in facing the risk of falling objects. The system advises the worker of the risk level of accidents in real-time employing a smart wristband. The proposed IoT infrastructure has been tested in three different scenarios involving habitual working situations and characterized by different levels of falling objects risk. As assessed by an expert panel, the proposed system shows suitable results.This research was funded by University of Naples Federico II through the Finanziamento della Ricerca di Ateneo (FRA) 2020 (CUP: E69C20000380005) and has been partially supported by the ”Programa de ayuda para Estancias Breves en Centros de Investigación de Calidad” of the University of Málaga and the research project BIA2016-79270-P, the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund-ERDF (Fondo Europeo de Desarrollo Regional-FEDER) under project PGC2018-096156-B-I00 Recuperación y Descripción de Imágenes mediante Lenguaje Natural usando Técnicas de Aprendizaje Profundo y Computación Flexible and the Andalusian Government under Grant P18-RT-2248

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Synthesis of decision making in a distributed intelligent personnel health management system on offshore oil platform

    Get PDF
    This paper proposes a methodological approach for the decision synthesis in a geographically distributed intelligent health management system for oil workers working in offshore industry. The decision-making methodology is based on the concept of a person-centered approach to managing the health and safety of personnel, which implies the inclusion of employees as the main component in the control loop. This paper develops a functional model of the health management system for workers employed on offshore oil platforms and implements it through three phased operations that is monitoring and assessing the health indicators and environmental parameters of each employee, and making decisions. These interacting operations combine the levels of a distributed intelligent health management system. The paper offers the general principles of functioning of a distributed intelligent system for managing the health of workers in the context of structural components and computing platforms. It presents appropriate approaches to the implementation of decision support processes and describes one of the possible methods for evaluating the generated data and making decisions using fuzzy pattern recognition. The models of a fuzzy ideal image and fuzzy real images of the health status of an employee are developed and an algorithm is described for assessing the deviation of generated medical parameters from the norm. The paper also compiles the rules to form the knowledge bases of a distributed intelligent system for remote continuous monitoring. It is assumed that embedding this base into the intelligent system architecture will objectively assess the trends in the health status of workers and make informed decisions to eliminate certain problem

    A New Trust Framework for E-Government in Cloud of Things

    Get PDF
    The concept of Cloud of Things becomes important for each e-government, facilitating its way of work, increasing its productivity and all that leading to cost savings. It will likely have a significant impact on the e-governments in the future. E-government diversity goals face many challenges. Trust is a major challenge when deploying Cloud of Things in e-government. In this paper, a new trust framework is proposed that supports trust between Internet of Things devices interconnected to the Cloud in order to support e-government services to be delivered in trusted manner. The proposed framework has been applied to a use case study to ensure the trustworthiness of the proposed framework in a real mission. The results show that the proposed trust framework is useful to ensuring a trust environment for Cloud of Things in order to continue providing and gathering data needed to provide services to users through the E-government services

    Reminder Care System: An Activity-Aware Cross-Device Recommendation System

    Full text link
    © 2019, Springer Nature Switzerland AG. Alzheimer’s disease (AD) affects large numbers of elderly people worldwide and represents a significant social and economic burden on society, particularly in relation to the need for long term care facilities. These costs can be reduced by enabling people with AD to live independently at home for a longer time. The use of recommendation systems for the Internet of Things (IoT) in the context of smart homes can contribute to this goal. In this paper, we present the Reminder Care System (RCS), a research prototype of a recommendation system for the IoT for elderly people with cognitive disabilities. RCS exploits daily activities that are captured and learned from IoT devices to provide personalised recommendations. The experimental results indicate that RCS can inform the development of real-world IoT applications

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    corecore