33,681 research outputs found

    Boosting the concordance index for survival data - a unified framework to derive and evaluate biomarker combinations

    Get PDF
    The development of molecular signatures for the prediction of time-to-event outcomes is a methodologically challenging task in bioinformatics and biostatistics. Although there are numerous approaches for the derivation of marker combinations and their evaluation, the underlying methodology often suffers from the problem that different optimization criteria are mixed during the feature selection, estimation and evaluation steps. This might result in marker combinations that are only suboptimal regarding the evaluation criterion of interest. To address this issue, we propose a unified framework to derive and evaluate biomarker combinations. Our approach is based on the concordance index for time-to-event data, which is a non-parametric measure to quantify the discrimatory power of a prediction rule. Specifically, we propose a component-wise boosting algorithm that results in linear biomarker combinations that are optimal with respect to a smoothed version of the concordance index. We investigate the performance of our algorithm in a large-scale simulation study and in two molecular data sets for the prediction of survival in breast cancer patients. Our numerical results show that the new approach is not only methodologically sound but can also lead to a higher discriminatory power than traditional approaches for the derivation of gene signatures.Comment: revised manuscript - added simulation study, additional result

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    An update on statistical boosting in biomedicine

    Get PDF
    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine-learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine

    Scaling DBSCAN-like algorithms for event detection systems in Twitter

    Get PDF
    The increasing use of mobile social networks has lately transformed news media. Real-world events are nowadays reported in social networks much faster than in traditional channels. As a result, the autonomous detection of events from networks like Twitter has gained lot of interest in both research and media groups. DBSCAN-like algorithms constitute a well-known clustering approach to retrospective event detection. However, scaling such algorithms to geographically large regions and temporarily long periods present two major shortcomings. First, detecting real-world events from the vast amount of tweets cannot be performed anymore in a single machine. Second, the tweeting activity varies a lot within these broad space-time regions limiting the use of global parameters. Against this background, we propose to scale DBSCAN-like event detection techniques by parallelizing and distributing them through a novel density-aware MapReduce scheme. The proposed scheme partitions tweet data as per its spatial and temporal features and tailors local DBSCAN parameters to local tweet densities. We implement the scheme in Apache Spark and evaluate its performance in a dataset composed of geo-located tweets in the Iberian peninsula during the course of several football matches. The results pointed out to the benefits of our proposal against other state-of-the-art techniques in terms of speed-up and detection accuracy.Peer ReviewedPostprint (author's final draft
    • …
    corecore