51 research outputs found

    Development of an Epileptic Seizure Detection Application based on Parallel Computing

    Get PDF
    Abstract—Epileptic seizure detection in a large database of Electroencephalography (EEG) signals needs to be a time constrained process for real-time analysis. Epileptic seizure detection algorithms are designed to obtain and analyze a group of neural signals and recognize the presence of seizure occurrence. The computational cost of the algorithms should be minimized to reduce the processing time and memory consumption. Automated epileptic seizure detection using optimized feature selection improves the classification accuracy, but it occupies more processing time during the Artifact Removal (AR) stage. So, the execution time is greatly reduced by introducing task parallelism in the artifact removal stage. By harnessing parallel computing the computational overhead and processing time are decreased. An epileptic seizure detection application is developed and analyzed with respect to execution time, speedup, and parallel efficiency. The application was developed in Intel Pentium(R) Dual-core CPU with processor clock rate of 2.60 GHz, memory of 1.96 GB, and operating system of Windows X

    Pre-Ictal Phase Detection with SVMs

    Get PDF
    Over 50 million persons worldwide are affected by epilepsy. Epilepsy is a brain disorder known for sudden, unexpected transitions from normal to pathological behavioral states called epileptic seizures. Epilepsy poses a significant burden to society due to associated healthcare cost to treat and control the unpredictable and spontaneous occurrence of seizures. There is a need for a quick screening process that could help neurologist diagnose and determine the patient’s treatment. Electroencephalogram has been traditionally used to diagnose patients by evaluating those brain functions that may correspond to epilepsy. The objective of this paper is to implement a novel detection technique of pre-ictal state that announces epileptic seizures from the online EEG data analysis. Unlike most published methods, that are aimed to distinguish only the normal from the epilepsy state, in this work the pre-ictal state is introduced as a new patient status, thus differentiating three possible states: normal (healthy), pre-ictal and epileptic seizure. In this manner, the patient should get timely alert about the possible seizure attack so that she/he can stop with its activities and take safety precautions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work is partially supported by the Ministry of Education and Science of Spain under contract TIN2010-16144 and Junta de Andalucía under contract TIC-1692

    Effective electroencephalogram based epileptic seizure detection using support vector machine and statistical moment’s features

    Get PDF
    Epilepsy is one of the widespread disorders. It is a noncommunicable disease that affects the human nerve system. Seizures are abnormal patterns of behavior in the electricity of the brain which produce symptoms like losing consciousness, attention or convulsions in the whole body. This paper demonstrates an effective electroencephalogram (EEG) based seizure detection method using discrete wavelet transformation (DWT) for signal decomposition to extract features. An automatic channel selection method was proposed by the researcher to select the best channel from 23 channels based on maximum variance value. The records were segmented into a nonoverlapping segment with long 1-S. The support vector machine (SVM) model was used to automatically detect segments that contain seizures, using both frequency and time domain statistical moment features. The experimental result was obtained from 24 patients in CHB-MIT database. The average accuracy is 94.1, sensitivity is 93.5, specificity is 94.6 and the false positive rate average is 0.054

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients

    Get PDF
    This is the accepted manuscript version of the following article: Iosif Mporas, “Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients”, Expert Systems with Applications, Vol. 42(6), December 2014. The final published version is available at: http://www.sciencedirect.com/science/article/pii/S0957417414007763?via%3Dihub © 2014 Elsevier Ltd. All rights reserved.In this paper a seizure detector using EEG and ECG signals, as a module of a healthcare system, is presented. Specifically, the module is based on short-time analysis with time-domain and frequency-domain features and classification using support vector machines. The seizure detection module was evaluated on three subjects with diagnosed idiopathic generalized epilepsy manifested with absences. The achieved seizure detection accuracy was approximately 90% for all evaluated subjects. Feature ranking investigation and evaluation of the seizure detection module using subsets of features showed that the feature vector composed of approximately the 65%-best ranked parameters provides a good trade-off between computational demands and accuracy. This configurable architecture allows the seizure detection module to operate as part of a healthcare system in offline mode as well as in online mode, where real-time performance is needed.Peer reviewe

    Reliable epileptic seizure detection using an improved wavelet neural network

    Get PDF
    BackgroundElectroencephalogram (EEG) signal analysis is indispensable in epilepsy diagnosis as it offers valuable insights for locating the abnormal distortions in the brain wave. However, visual interpretation of the massive amounts of EEG signals is time-consuming, and there is often inconsistent judgment between experts. AimsThis study proposes a novel and reliable seizure detection system, where the statistical features extracted from the discrete wavelet transform are used in conjunction with an improved wavelet neural network (WNN) to identify the occurrence of seizures. Method  Experimental simulations were carried out on a well-known publicly available dataset, which was kindly provided by the Epilepsy Center, University of Bonn, Germany. The normal and epileptic EEG signals were first pre-processed using the discrete wavelet transform. Subsequently, a set of statistical features was extracted to train a WNNs-based classifier. ResultsThe study has two key findings. First, simulation results showed that the proposed improved WNNs-based classifier gave excellent predictive ability, where an overall classification accuracy of 98.87% was obtained. Second, by using the 10th and 90th percentiles of the absolute values of the wavelet coefficients, a better set of EEG features can be identified from the data, as the outliers are removed before any further downstream analysis.ConclusionThe obtained high prediction accuracy demonstrated the feasibility of the proposed seizure detection scheme. It suggested the prospective implementation of the proposed method in developing a real time automated epileptic diagnostic system with fast and accurate response that could assist neurologists in the decision making process

    時間周波数領域でのてんかん脳波識別に関する研究 ‐平均二乗根に基づく特徴抽出に着目して‐

    Get PDF
    Epilepsy affects over 50 million people on an average yearly world wide. Epileptic Seizure is a generalised term which has broad classification depending on the reasons behind its occurrence. Parvez et al. when applied feature instantaneous bandwidth B2AM and time averaged bandwidth B2FM for classification of interictal and ictal on Freiburg data base, the result dipped low to 77.90% for frontal lobe whereas it was 80.20% for temporal lobe compare to the 98.50% of classification accuracy achieved on Bonn dataset with same feature for classification of ictal against interictal. We found reasons behind such low results are, first Parvez et al. has used first IMF of EMD for feature computation which mostly noised induce. Secondly, they used same kernel parameters of SVM as Bajaj et al. which they must have optimised with different dataset. But the most important reason we found is that two signals s1 and s2 can have same instantaneous bandwidth. Therefore, the motivation of the dissertation is to address the drawback of feature instantaneous bandwidth by new feature with objective of achieving comparable classification accuracy. In this work, we have classified ictal from healthy nonseizure interictal successfully first by using RMS frequency and another feature from Hilbert marginal spectrum then with its parameters ratio. RMS frequency is the square root of sum of square bandwidth and square of center frequency. Its contributing parameters ratio is ratio of center frequency square to square bandwidth. We have also used dominant frequency and its parameters ratio for the same purpose. Dominant frequency have same physical relevance as RMS frequency but different by definition, i.e. square root of sum of square of instantaneous band- width and square of instantaneous frequency. Third feature that we have used is by exploiting the equivalence of RMS frequency and dominant frequency (DF) to define root mean instantaneous frequency square (RMIFS) as square root of sum of time averaged bandwidth square and center frequency square. These features are average measures which shows good discrimination power in classifying ictal from interictal using SVM. These features, fr and fd also have an advantage of overcoming the draw back of square bandwidth and instantaneous bandwidth. RMS frequency that we have used in this work is different from generic root mean square analysis. We have used an adaptive thresholding algorithm to address the issue of false positive. It was able to increase the specificity by average of 5.9% on average consequently increasing the accuracy. Then we have applied morphological component analysis (MCA) with the fractional contribution of dominant frequency and other rest of the features like band- width parameter’s contribution and RMIFS frequency and its parameters and their ratio. With the results from proposed features, we validated our claim to overcome the drawback of instantaneous bandwidth and square bandwidth.九州工業大学博士学位論文 学位記番号:生工博甲第323号 学位授与年月日:平成30年6月28日1 Introduction|2 Empirical Mode Decomposition|3 Root Mean Square Frequency|4 Root Mean Instantaneous Frequency Square|5 Morphological Component Analysis|6 Conclusion九州工業大学平成30年

    Artificial immune system and particle swarm optimization for electroencephalogram based epileptic seizure classification

    Get PDF
    Automated analysis of brain activity from electroencephalogram (EEG) has indispensable applications in many fields such as epilepsy research. This research has studied the abilities of negative selection and clonal selection in artificial immune system (AIS) and particle swarm optimization (PSO) to produce different reliable and efficient methods for EEG-based epileptic seizure recognition which have not yet been explored. Initially, an optimization-based classification model was proposed to describe an individual use of clonal selection and PSO to build nearest centroid classifier for EEG signals. Next, two hybrid optimization-based negative selection models were developed to investigate the integration of the AIS-based techniques and negative selection with PSO from the perspective of classification and detection. In these models, a set of detectors was created by negative selection as self-tolerant and their quality was improved towards non-self using clonal selection or PSO. The models included a mechanism to maintain the diversity and generality among the detectors. The detectors were produced in the classification model for each class, while the detection model generated the detectors only for the abnormal class. These hybrid models differ from each other in hybridization configuration, solution representation and objective function. The three proposed models were abstracted into innovative methods by applying clonal selection and PSO for optimization, namely clonal selection classification algorithm (CSCA), particle swarm classification algorithm (PSCA), clonal negative selection classification algorithm (CNSCA), swarm negative selection classification algorithm (SNSCA), clonal negative selection detection algorithm (CNSDA) and swarm negative selection detection algorithm (SNSDA). These methods were evaluated on EEG data using common measures in medical diagnosis. The findings demonstrated that the methods can efficiently achieve a reliable recognition of epileptic activity in EEG signals. Although CNSCA gave the best performance, CNSDA and SNSDA are preferred due to their efficiency in time and space. A comparison with other methods in the literature showed the competitiveness of the proposed methods

    Low-Power Implantable Device for Onset Detection and Subsequent Treatment of Epileptic Seizures: A Review

    Get PDF
    Over the past few years, there has been growing interest in neuro-responsive intracerebral local treatments of seizures, such as focal drug delivery, focal cooling, or electrical stimulation. This mode of treatment requires an effective intracerebral electroencephalographic acquisition system, seizure detector, brain stimulator, and wireless system that consume ultra-low power. This review focuses on alternative brain stimulation treatments for medically intractable epilepsy patients. We mainly discuss clinical studies of long-term responsive stimulation and suggest safer optimized therapeutic options for epilepsy. Finally, we conclude our study with the proposed low-power, implantable fully integrated device that automatically detects low-voltage fast activity ictal onsets and triggers focal treatment to disrupt seizure progression. The detection performance was verified using intracerebral electroencephalographic recordings from two patients with epilepsy. Further experimental validation of this prototype is underway

    Effective early detection of epileptic seizures through EEG signals using classification algorithms based on t-distributed stochastic neighbor embedding and K-means

    Get PDF
    Epilepsy is a neurological disorder in the activity of brain cells that leads to seizures. An electroencephalogram (EEG) can detect seizures as it contains physiological information of the neural activity of the brain. However, visual examination of EEG by experts is time consuming, and their diagnoses may even contradict each other. Thus, an automated computer-aided diagnosis for EEG diagnostics is necessary. Therefore, this paper proposes an effective approach for the early detection of epilepsy. The proposed approach involves the extraction of important features and classification. First, signal components are decomposed to extract the features via the discrete wavelet transform (DWT) method. Principal component analysis (PCA) and the t-distributed stochastic neighbor embedding (t-SNE) algorithm were applied to reduce the dimensions and focus on the most important features. Subsequently, K-means clustering + PCA and K-means clustering + t-SNE were used to divide the dataset into subgroups to reduce the dimensions and focus on the most important representative features of epilepsy. The features extracted from these steps were fed to extreme gradient boosting, K-nearest neighbors (K-NN), decision tree (DT), random forest (RF) and multilayer perceptron (MLP) classifiers. The experimental results demonstrated that the proposed approach provides superior results to those of existing studies. During the testing phase, the RF classifier with DWT and PCA achieved an accuracy of 97.96%, precision of 99.1%, recall of 94.41% and F1 score of 97.41%. Moreover, the RF classifier with DWT and t-SNE attained an accuracy of 98.09%, precision of 99.1%, recall of 93.9% and F1 score of 96.21%. In comparison, the MLP classifier with PCA + K-means reached an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and F1 score of 97.4%
    corecore