7,211 research outputs found

    Influence of Social Circles on User Recommendations

    Get PDF
    Recommender systems are powerful tools that filter and recommend content relevant to a user. One of the most popular techniques used in recommender systems is collaborative filtering. Collaborative filtering has been successfully incorporated in many applications. However, these recommendation systems require a minimum number of users, items, and ratings in order to provide effective recommendations. This results in the infamous cold start problem where the system is not able to produce effective recommendations for new users. In recent times, with escalation in the popularity and usage of social networks, people tend to share their experiences in the form of reviews and ratings on social media. The components of social media like influence of friends, users\u27 interests, and friends\u27 interests create many opportunities to develop solutions for sparsity and cold start problems in recommender systems. This research observes these patterns and analyzes the role of social trust in baseline social recommender algorithms SocialMF - a matrix factorization-based model, SocialFD - a model that uses distance metric learning, and GraphRec - an attention-based deep learning model. Through extensive experimentation, this research compares the performance and results of these algorithms on datasets that these algorithms were tested on and one new dataset using the evaluations metrics such as root mean squared error (RMSE) and mean absolute error (MAE). By modifying the social trust component of these datasets, this project focuses on investigating the impact of trust on performance of these models. Experimental results of this research suggest that there is no conclusive evidence on how trust propagation plays a major part in these models. Moreover, these models show slightly improved performance when supplied with modified trust data

    Web3Recommend: Decentralised recommendations with trust and relevance

    Full text link
    Web3Recommend is a decentralized Social Recommender System implementation that enables Web3 Platforms on Android to generate recommendations that balance trust and relevance. Generating recommendations in decentralized networks is a non-trivial problem because these networks lack a global perspective due to the absence of a central authority. Further, decentralized networks are prone to Sybil Attacks in which a single malicious user can generate multiple fake or Sybil identities. Web3Recommend relies on a novel graph-based content recommendation design inspired by GraphJet, a recommendation system used in Twitter enhanced with MeritRank, a decentralized reputation scheme that provides Sybil-resistance to the system. By adding MeritRank's decay parameters to the vanilla Social Recommender Systems' personalized SALSA graph algorithm, we can provide theoretical guarantees against Sybil Attacks in the generated recommendations. Similar to GraphJet, we focus on generating real-time recommendations by only acting on recent interactions in the social network, allowing us to cater temporally contextual recommendations while keeping a tight bound on the memory usage in resource-constrained devices, allowing for a seamless user experience. As a proof-of-concept, we integrate our system with MusicDAO, an open-source Web3 music-sharing platform, to generate personalized, real-time recommendations. Thus, we provide the first Sybil-resistant Social Recommender System, allowing real-time recommendations beyond classic user-based collaborative filtering. The system is also rigorously tested with extensive unit and integration tests. Further, our experiments demonstrate the trust-relevance balance of recommendations against multiple adversarial strategies in a test network generated using data from real music platforms

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction

    Full text link
    Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction
    corecore