1,341 research outputs found

    Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobil Ad Hoc Networks

    Get PDF
    This research effort examines the theory, application, and results for a Reputation-based Internet Protocol Security (RIPSec) framework that provides security for an ad-hoc network operating in a hostile environment. In RIPSec, protection from external threats is provided in the form of encrypted communication links and encryption-wrapped nodes while internal threats are mitigated by behavior grading that assigns reputations to nodes based on their demonstrated participation in the routing process. Network availability is provided by behavior grading and round-robin multipath routing. If a node behaves faithfully, it earns a positive reputation over time. If a node misbehaves (for any number of reasons, not necessarily intentional), it earns a negative reputation. Each member of the MANET has its own unique and subjective set of Reputation Indexes (RI) that enumerates the perceived reputation of the other MANET nodes. Nodes that desire to send data will eliminate relay nodes they perceive to have a negative reputation during the formulation of a route. A 50-node MANET is simulated with streaming multimedia and varying levels of misbehavior to determine the impact of the framework on network performance. Results of this research were very favorable. Analysis of the simulation data shows the number of routing errors sent in a MANET is reduced by an average of 52% when using RIPSec. The network load is also reduced, decreasing the overall traffic introduced into the MANET and permitting individual nodes to perform more work without overtaxing their limited resources. Finally, throughput is decreased due to larger packet sizes and longer round trips for packets to traverse the MANET, but is still sufficient to pass traffic with high bandwidth requirements (i.e., video and imagery) that is of interest in military networks

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    ASMA: towards adaptive secured multipath in MANETs

    Get PDF
    As they are used to create open communities, Mobile Ad hoc NETworks (MANETs) are not favourable environments to establish trust, which is necessary to provide security. Multipath routing mechanisms within infrastructureless networks environment seems appropriate and useful to enhance security protection. In fact, the level of trust can be increased so as many of potential security attacks are detected, revealed and stopped. Nevertheless an excessive control overhead is always generated. In this paper, we propose a global framework that integrates a set of concepts and mechanisms aiming at enhancing security in highly dynamic decentralized ad hoc networks. Our solution focuses on authentication, routing securing, trust management with reliable estimation of trust. A large panoply of attacks are prevented using our various mechanisms.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Cooperative Self-Scheduling Secure Routing Protocol for Efficient Communication in MANET

    Get PDF
    In wireless transmission, a Mobile Ad-hoc Network (MANET) contains many mobile nodes that can communicate without needing base stations. Due to the highly dynamic nature of wireless, MANETs face several issues, like malicious nodes making packet loss, high energy consumption, and security. Key challenges include efficient clustering and routing with optimal energy efficiency for Quality of Service (QoS) performance. To combat these issues, this novel presents Cooperative Self-Scheduling Secure Routing Protocol (CoS3RP) for efficient scheduling for proficient packet transmission in MANET. Initially, we used Elite Sparrow Search Algorithm (ESSA) for identifies the Cluster Head (CH) and form clusters. The Multipath Optimal Distance Selection (MODS) technique is used to find the multiple routes for data transmission. Afterward, the proposed CoS3RP transmits the packets based on each node authentication. The proposed method for evaluating and selecting efficient routing and data transfer paths is implemented using the Network simulator (NS2) tool, and the results are compared with other methods. Furthermore, the proposed well performs in routing performance, security, latency and throughput
    • …
    corecore