431 research outputs found

    Reconfigurable Turbo/Viterbi Channel Decoder in the Coarse-Grained Montium Architecture

    Get PDF
    Mobile wireless communication systems become multi-mode systems. These future mobile systems employ multiple wireless communication standards, which are different by means of algorithms that are used to implement the baseband processing and the channel decoding. Efficient implementation of multiple wireless standards in mobile terminals requires energy-efficient and flexible hardware. We propose to implement both the baseband processing and channel decoding in a heterogeneous reconfigurable system-on-chip. The system-on-chip contains many processing elements of different granularities, which includes our coarse-grained reconfigurable MONTIUM architecture. We already showed the feasibility to implement the baseband processing of OFDM and WCDMA based communication systems in the MONTIUM. In this paper we implemented two kinds of channel decoders in the same MONTIUM architecture: Viterbi and Turbo decoding

    Irregular Variable Length Coding

    Get PDF
    In this thesis, we introduce Irregular Variable Length Coding (IrVLC) and investigate its applications, characteristics and performance in the context of digital multimedia broadcast telecommunications. During IrVLC encoding, the multimedia signal is represented using a sequence of concatenated binary codewords. These are selected from a codebook, comprising a number of codewords, which, in turn, comprise various numbers of bits. However, during IrVLC encoding, the multimedia signal is decomposed into particular fractions, each of which is represented using a different codebook. This is in contrast to regular Variable Length Coding (VLC), in which the entire multimedia signal is encoded using the same codebook. The application of IrVLCs to joint source and channel coding is investigated in the context of a video transmission scheme. Our novel video codec represents the video signal using tessellations of Variable-Dimension Vector Quantisation (VDVQ) tiles. These are selected from a codebook, comprising a number of tiles having various dimensions. The selected tessellation of VDVQ tiles is signalled using a corresponding sequence of concatenated codewords from a Variable Length Error Correction (VLEC) codebook. This VLEC codebook represents a specific joint source and channel coding case of VLCs, which facilitates both compression and error correction. However, during video encoding, only particular combinations of the VDVQ tiles will perfectly tessellate, owing to their various dimensions. As a result, only particular sub-sets of the VDVQ codebook and, hence, of the VLEC codebook may be employed to convey particular fractions of the video signal. Therefore, our novel video codec can be said to employ IrVLCs. The employment of IrVLCs to facilitate Unequal Error Protection (UEP) is also demonstrated. This may be applied when various fractions of the source signal have different error sensitivities, as is typical in audio, speech, image and video signals, for example. Here, different VLEC codebooks having appropriately selected error correction capabilities may be employed to encode the particular fractions of the source signal. This approach may be expected to yield a higher reconstruction quality than equal protection in cases where the various fractions of the source signal have different error sensitivities. Finally, this thesis investigates the application of IrVLCs to near-capacity operation using EXtrinsic Information Transfer (EXIT) chart analysis. Here, a number of component VLEC codebooks having different inverted EXIT functions are employed to encode particular fractions of the source symbol frame. We show that the composite inverted IrVLC EXIT function may be obtained as a weighted average of the inverted component VLC EXIT functions. Additionally, EXIT chart matching is employed to shape the inverted IrVLC EXIT function to match the EXIT function of a serially concatenated inner channel code, creating a narrow but still open EXIT chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability of error is facilitated at near-capacity channel SNRs
    • …
    corecore