87 research outputs found

    A tree-scattering model for improved propagation prediction in urban microcells

    Get PDF
    This paper presents a model for the scattering of radiowaves from the canopy of a single tree. The canopy is modeled as a cylindrical volume containing randomly distributed and oriented cylinders, representing the branches, and thin disks, representing the leaves. A simple expression for the incoherent scattered field outside the canopy is obtained using Twersky's multiple scattering theory. This expression is shown to agree well with results of scattering measurements on a live tree typical of those found in urban environments. The scattering model can be readily incorporated in ray-based propagation prediction tools that assist the planning of microcellular radio networks. This involves the use of so-called tree-scattered rays, which interact at the tree centers. Path loss predictions generated with the aid of the new model are shown and compared with measured data to illustrate the considerable improvement in prediction accuracy that can be achieved in realistic urban microcellular scenarios by taking into account the scatter from trees

    Modeling and characterization of urban radio channels for mobile communications

    Get PDF
    Results of this thesis contribute in modeling and characterization of radio channels for future mobile communications. The results are presented mainly in three parts: a) modeling of propagation mechanisms, b) methodology of developing a propagation model, c) characterization of urban radio channel. One of the main propagation physical phenomena that have an important role in diverting signals to non line of sight scenarios is the diffraction process. This thesis proposes diffraction coefficients that have better agreement with finite difference time domain solution and rigorous diffraction theory than the coefficient commonly used in propagation predictions for mobile communications. The importance of diffuse scattering has also been investigated and showed that this physical process may have a key role in urban propagation, with a particular impact on the delay spread and angular spread of the signal at the receiver. This thesis proposes wideband propagation models for main and perpendicular streets of urban street grids. The propagation models are ray-based and are given in explicit mathematical expressions. Each ray is characterized in terms of its amplitude, delay, and angle of arrival, angle of departure for vertical and horizontal polarizations. Each of these characteristics is given in a closed mathematical form. Having wideband propagation model in explicit expression makes its implementation easy and computation fast. Secondary source modeling approach for perpendicular streets has also been introduced in this thesis. The last part of the thesis deals with characterization of urban radio channels for extracting parameters that help in successful design of mobile communication systems. Knowledge of channel characteristics enables reaching optimum trade off between system performance and complexity. This thesis analyzes measurement results at 2 GHz to extract channel parameters in terms of Rake finger characteristics in order to get information that helps to optimize Rake receiver design for enhanced-IMT2000 systems. Finger life distance has also been investigated for both micro- and small cell scenarios. This part of the thesis also presents orthogonality factor of radio channel for W-CDMA downlink at different bandwidths. Characterization of dispersion metrics in delay and angular domains for microcellular channels is also presented at different base station antenna heights. A measure of (dis-) similarity between multipath components in terms of separation distance in delay and angular domains is introduced by the concept of distance function, which is a step toward in development of algorithm extraction and analysis multipath clustering. In summary, the significant contributions of the thesis are in three parts. 1) Development of new diffraction coefficients and corrections of limitations of existing one for accurate propagation predictions for mobile communications. 2) Development of wideband propagation models for urban street grid. The novelty of the model is the development in explicit mathematical expressions. The developed models can be used to study propagation problem in microcellular urban street grids. 3) Presenting channel parameters that will help in the design of future mobile communication systems (enhanced-IMT2000), like number of active fingers, finger life distance, and orthogonality factors for different bandwidths. In addition, a technique based on multipath separation distance is proposed as a step toward in development of algorithms for extraction and analysis of multipath clusters.reviewe

    A propagation model for trees based on multiple scattering theory

    Full text link

    Review on Ray Tracing Channel Simulation Accuracy in Sub-6 GHz Outdoor Deployment Scenarios

    Get PDF

    A Model for the Detailed Analysis of Radio Links Involving Tree Canopies

    Get PDF
    Detailed analysis of tree canopy interaction with incident radiowaves has mainly been limited to remote sensing for the purpose of forest classification among many other applications. This represents a monostatic configuration, unlike the case of communication links, which are bistatic. In general, link analyses have been limited to the application of simple, empirical formulas based on the use of specific attenuation values in dB/m and the traversed vegetated mass as, e.g., the model in Recommendation ITU-R P.833-8 [1]. In remote sensing, two main techniques are used: Multiple Scattering Theory (MST) [2][5] and Radiative Transfer Theory (RT), [5] and [6]. We have paid attention in the past to MST [7][10]. It was shown that a full application of MST leads to very long computation times which are unacceptable in the case where we have to analyze a scenario with several trees. Extensive work using MST has been also presented by others in [11][16] showing the interest in this technique. We have proposed a simplified model for scattering from tree canopies based on a hybridization of MST and a modified physical optics (PO) approach [16]. We assume that propagation through a canopy is accounted for by using the complex valued propagation constant obtained by MST. Unlike the case when the full MST is applied, the proposed approach offers significant benefits including a direct software implementation and acceptable computation times even for high frequencies and electrically large canopies. The proposed model thus replaces the coherent component in MST, significant in the forward direction, but keeps the incoherent or diffuse scattering component present in all directions. The incoherent component can be calculated within reasonable times. Here, we present tests of the proposed model against MST using an artificial single-tree scenario at 2 GHz and 10 GHz
    corecore