37 research outputs found

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Multi-Modal Enhancement Techniques for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of 8-bit color digital images based on spatial domain, wavelet transform domain, and multiple image fusion approaches are investigated in this dissertation research. In the category of spatial domain approach, two enhancement algorithms are developed to deal with problems associated with images captured from scenes with high dynamic ranges. The first technique is based on an illuminance-reflectance (I-R) model of the scene irradiance. The dynamic range compression of the input image is achieved by a nonlinear transformation of the estimated illuminance based on a windowed inverse sigmoid transfer function. A single-scale neighborhood dependent contrast enhancement process is proposed to enhance the high frequency components of the illuminance, which compensates for the contrast degradation of the mid-tone frequency components caused by dynamic range compression. The intensity image obtained by integrating the enhanced illuminance and the extracted reflectance is then converted to a RGB color image through linear color restoration utilizing the color components of the original image. The second technique, named AINDANE, is a two step approach comprised of adaptive luminance enhancement and adaptive contrast enhancement. An image dependent nonlinear transfer function is designed for dynamic range compression and a multiscale image dependent neighborhood approach is developed for contrast enhancement. Real time processing of video streams is realized with the I-R model based technique due to its high speed processing capability while AINDANE produces higher quality enhanced images due to its multi-scale contrast enhancement property. Both the algorithms exhibit balanced luminance, contrast enhancement, higher robustness, and better color consistency when compared with conventional techniques. In the transform domain approach, wavelet transform based image denoising and contrast enhancement algorithms are developed. The denoising is treated as a maximum a posteriori (MAP) estimator problem; a Bivariate probability density function model is introduced to explore the interlevel dependency among the wavelet coefficients. In addition, an approximate solution to the MAP estimation problem is proposed to avoid the use of complex iterative computations to find a numerical solution. This relatively low complexity image denoising algorithm implemented with dual-tree complex wavelet transform (DT-CWT) produces high quality denoised images

    A Multiresolution Markovian Fusion Model for the Color Visualization of Hyperspectral Images

    Full text link

    Adaptive Representations for Image Restoration

    Get PDF
    In the �eld of image processing, building good representation models for natural images is crucial for various applications, such as image restora- tion, sampling, segmentation, etc. Adaptive image representation models are designed for describing the intrinsic structures of natural images. In the classical Bayesian inference, this representation is often known as the prior of the intensity distribution of the input image. Early image priors have forms such as total variation norm, Markov Random Fields (MRF), and wavelets. Recently, image priors obtained from machine learning tech- niques tend to be more adaptive, which aims at capturing the natural image models via learning from larger databases. In this thesis, we study adaptive representations of natural images for image restoration. The purpose of image restoration is to remove the artifacts which degrade an image. The degradation comes in many forms such as image blurs, noises, and artifacts from the codec. Take image denoising for an example. There are several classic representation methods which can generate state- of-the-art results. The �rst one is the assumption of image self-similarity. However, this representation has the issue that sometimes the self-similarity assumption would fail because of high noise levels or unique image contents. The second one is the wavelet based nonlocal representation, which also has a problem in that the �xed basis function is not adaptive enough for any arbitrary type of input images. The third is the sparse coding using over- complete dictionaries, which does not have the hierarchical structure that is similar to the one in human visual system and is therefore prone to denoising artifacts. My research started from image denoising. Through the thorough review and evaluation of state-of-the-art denoising methods, it was found that the representation of images is substantially important for the denoising tech- nique. At the same time, an improvement on one of the nonlocal denoising method was proposed, which improves the representation of images by the integration of Gaussian blur, clustering and Rotationally Invariant Block Matching. Enlightened by the successful application of sparse coding in compressive sensing, we exploited the image self-similarity by using a sparse representation based on wavelet coe�cients in a nonlocal and hierarchical way, which generates competitive results compared to the state-of-the-art denoising algorithms. Meanwhile, another adaptive local �lter learned by Genetic Programming (GP) was proposed for e�cient image denoising. In this work, we employed GP to �nd the optimal representations for local im- age patches through training on massive datasets, which yields competitive results compared to state-of-the-art local denoising �lters. After success- fully dealt with the denoising part, we moved to the parameter estimation for image degradation models. For instance, image blur identi�cation uses deep learning, which has recently been proposed as a popular image repre- sentation approach. This work has also been extended to blur estimation based on the fact that the second step of the framework has been replaced with general regression neural network. In a word, in this thesis, spatial cor- relations, sparse coding, genetic programming, deep learning are explored as adaptive image representation models for both image restoration and parameter estimation. We conclude this thesis by considering methods based on machine learning to be the best adaptive representations for natural images. We have shown that they can generate better results than conventional representation mod- els for the tasks of image denoising and deblurring
    corecore