2,934 research outputs found

    Travelling Waves in Distributed Control

    Get PDF
    Katedra řídicí technik

    A New Distributed Predictive Congestion Aware Re-Routing Algorithm for CO2 Emissions Reduction

    Get PDF
    In the last years, vehicular networking has grown up in terms of interest and transmission capability, due to the possibility of exploiting the distributed communication paradigm in a mobile scenario, where moving nodes are represented by vehicles. The different existing standards for vehicular ad-hoc networks, such as dedicate short range communication (DSRC), wireless access for vehicular environment (WAVE)/IEEE802.11p, have given to the research community the possibility of developing new medium access control (MAC) and routing schemes, in order to enhance the quality and the comfort of mobile users who are driving their vehicles. In this paper, we focus our attention on the optimization of traffic flowing in a vehicular environment with vehicle-2-roadside capability. As shown later, the proposed idea exploits the information that is gathered by road-side units to redirect traffic flows (in terms of vehicles) to less congested roads, with an overall system optimization, also in terms of carbon dioxide emissions reduction. An analytical model, as well as a set of pseudo-code instructions, have been introduced in the paper. A deep campaign of simulations has been carried out to give more effectiveness to our proposal

    SIMULATION AND ANALYSIS OF VEHICULAR AD-HOC NETWORKS IN URBAN AND RURAL AREAS

    Get PDF
    According to the American National Highway Traffic Safety Administration, in 2010, there were an estimated 5,419,000 police-reported traffic crashes, in which 32,885 people were killed and 2,239,000 people were injured in the US alone. Vehicular Ad-Hoc Network (VANET) is an emerging technology which promises to decrease car accidents by providing several safety related services such as blind spot, forward collision and sudden braking ahead warnings. Unfortunately, research of VANET is hindered by the extremely high cost and complexity of field testing. Hence it becomes important to simulate VANET protocols and applications thoroughly before attempting to implement them. This thesis studies the feasibility of common mobility and wireless channel models in VANET simulation and provides a general overview of the currently available VANET simulators and their features. Six different simulation scenarios are performed to evaluate the performance of AODV, DSDV, DSR and OLSR Ad-Hoc routing protocols with UDP and TCP packets. Simulation results indicate that reactive protocols are more robust and suitable for the highly dynamic VANET networks. Furthermore, TCP is found to be more suitable for VANET safety applications due to the high delay and packet drop of UDP packets.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Unsupervised learning based coordinated multi-task allocation for unmanned surface vehicles

    Get PDF
    In recent decades, unmanned surface vehicles (USVs) are attracting increasing attention due to their underlying capability in autonomously undertaking complex maritime tasks in constrained environments. However, the autonomy level of USVs is still limited, especially when being deployed to conduct multiple tasks simultaneously. This paper, therefore, aims to improve USVs autonomy level by investigating and developing an effective and efficient task management algorithm for multi-USV systems. To better deal with challenging requirements such as allocating vast tasks in cluttered environments, the task management has been de-composed into two submissions, i.e., task allocation and task execution. More specifically, unsupervised learning strategies have been used with an improved K-means algorithm proposed to first assign different tasks for a multi-USV system then a self-organising map (SOM) been implemented to deal with the task execution problem based upon the assigned tasks for each USV. Differing to other work, the communication problem that is crucial for USVs in a constrained environment has been specifically resolved by designing a new competition strategy for K-means algorithm. Key factors that will influence the communication capability in practical applications have been taken into account. A holistic task management architecture has been designed by integrating both the task allocation and task execution algorithms, and a number of simulations in both simulated and practical maritime environments have been carried out to validate the effectiveness of the proposed algorithms
    corecore