9,492 research outputs found

    Fingerprint Recognition Using Translation Invariant Scattering Network

    Full text link
    Fingerprint recognition has drawn a lot of attention during last decades. Different features and algorithms have been used for fingerprint recognition in the past. In this paper, a powerful image representation called scattering transform/network, is used for recognition. Scattering network is a convolutional network where its architecture and filters are predefined wavelet transforms. The first layer of scattering representation is similar to sift descriptors and the higher layers capture higher frequency content of the signal. After extraction of scattering features, their dimensionality is reduced by applying principal component analysis (PCA). At the end, multi-class SVM is used to perform template matching for the recognition task. The proposed scheme is tested on a well-known fingerprint database and has shown promising results with the best accuracy rate of 98\%.Comment: IEEE Signal Processing in Medicine and Biology Symposium, 201

    Identification of time-varying systems using multiresolution wavelet models

    Get PDF
    Identification of linear and nonlinear time-varying systems is investigated and a new wavelet model identification algorithm is introduced. By expanding each time-varying coefficient using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant problem and the identification reduces to regressor selection and parameter estimation. Several examples are included to illustrate the application of the new algorithm

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page
    • …
    corecore