79 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Data aggregation techniques in sensor networks: A survey

    Get PDF
    Wireless sensor networks consist of sensor nodes with sensing and communication capabilities. We focus on data aggregation problems in energy constrained sensor networks. The main goal of data aggregation algorithms is to gather and aggregate data in an energy efficient manner so that network lifetime is enhanced. In this paper, we present a survey of data aggregation algorithms in wireless sensor networks. We compare and contrast different algorithms on the basis of performance measures such as lifetime, latency and data accuracy. We conclude with possible future research directions

    Algorithmic Implementation of Load Balancing –in Wireless LAN

    Get PDF
    Intra domain traffic engineering (TE) has become an indispensable tool for Internet service providers (ISPs) to Optimize network performance and utilize network resources efficiently . Various explicitrouting TE methods were recently proposed and have been able to achieve high network performance. However, explicit routing has high complexity and requires large ternary content addressable memories (TCAMs) in the routers. Moreover, it is costly to deploy explicit routing in IP networks. In this paper, we present an approach, called generalized destination-based multipath routing (GDMR), to achieve the same high performance as explicit routing. The main contribution of this paper is that we prove that an arbitrary explicit routing can be converted to a loop-free destination-based routing without any performance penalty for a given traffic matrix. We present a systematic approach including a heuristic algorithm to realize GDMR. Extensive evaluation demonstrates the effectiveness and robustness of GDMR

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    EASND: Energy Adaptive Secure Neighbour Discovery Scheme for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) is defined as a distributed system of networking, which is enabled with set of resource constrained sensors, thus attempt to providing a large set of capabilities and connectivity interferences. After deployment nodes in the network must automatically affected heterogeneity of framework and design framework steps, including obtaining knowledge of neighbor nodes for relaying information. The primary goal of the neighbor discovery process is reducing power consumption and enhancing the lifespan of sensor devices. The sensor devices incorporate with advanced multi-purpose protocols, and specifically communication models with the pre-eminent objective of WSN applications. This paper introduces the power and security aware neighbor discovery for WSNs in symmetric and asymmetric scenarios. We have used different of neighbor discovery protocols and security models to make the network as a realistic application dependent model. Finally, we conduct simulation to analyze the performance of the proposed EASND in terms of energy efficiency, collisions, and security. The node channel utilization is exceptionally elevated, and the energy consumption to the discovery of neighbor nodes will also be significantly minimized. Experimental results show that the proposed model has valid accomplishment

    Algorithmic Implementation of Load Balancing �in Wireless LAN

    Get PDF
    Intra domain traffic engineering (TE) has become an indispensable tool for Internet Service Providers (ISPs) to optimize network performance and utilize network resources efficiently. Various explicit routing TE methods were recently proposed and have been able to achieve high network performance. However, explicit routing has high complexity and requires Large Ternary Content Addressable Memories (TCAMs) in the routers. Moreover, it is costly to deploy explicit routing in IP networks. In this project, we present an approach, called Generalized Destination-Based Multipath Routing (GDMR), to achieve the high performance as explicit routing. The main contribution of this project is to enhance an arbitrary explicit routing can be converted to a loop-free destination-based routing without any performance penalty for a given traffic matrix. We present a systematic approach including a heuristic algorithm to realize GDMR. Extensive evaluation demonstrates the effectiveness and robustness of GDMR

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore