18 research outputs found

    A tractable class of binary VCSPs via M-convex intersection

    Full text link
    A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions. An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper and \v{Z}ivn\'{y} classified the tractability of binary VCSP instances according to the concept of "triangle," and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa, Murota, and \v{Z}ivn\'{y} made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two quadratic M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be represented as the sum of two quadratic M-convex functions and can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.Comment: Full version of a STACS'18 pape

    Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection

    Get PDF
    A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions.An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper-Zivny classified the tractability of binary VCSP instances according to the concept of "triangle," and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa-Murota-Zivny made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    The complexity of general-valued CSPs seen from the other side

    Full text link
    The constraint satisfaction problem (CSP) is concerned with homomorphisms between two structures. For CSPs with restricted left-hand side structures, the results of Dalmau, Kolaitis, and Vardi [CP'02], Grohe [FOCS'03/JACM'07], and Atserias, Bulatov, and Dalmau [ICALP'07] establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by bounded-consistency algorithms (unconditionally) as bounded treewidth modulo homomorphic equivalence. The general-valued constraint satisfaction problem (VCSP) is a generalisation of the CSP concerned with homomorphisms between two valued structures. For VCSPs with restricted left-hand side valued structures, we establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by the kk-th level of the Sherali-Adams LP hierarchy (unconditionally). We also obtain results on related problems concerned with finding a solution and recognising the tractable cases; the latter has an application in database theory.Comment: v2: Full version of a FOCS'18 paper; improved presentation and small correction

    Generalized minimum 0-extension problem and discrete convexity

    Get PDF
    Given a fixed finite metric space (V,μ), the {\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP(Γ)\operatorname{VCSP}(\Gamma)

    Parameterized Algorithms for Zero Extension and Metric Labelling Problems

    Get PDF
    We consider the problems Zero Extension and Metric Labelling under the paradigm of parameterized complexity. These are natural, well-studied problems with important applications, but have previously not received much attention from this area. Depending on the chosen cost function mu, we find that different algorithmic approaches can be applied to design FPT-algorithms: for arbitrary mu we parameterize by the number of edges that cross the cut (not the cost) and show how to solve Zero Extension in time O(|D|^{O(k^2)} n^4 log n) using randomized contractions. We improve this running time with respect to both parameter and input size to O(|D|^{O(k)} m) in the case where mu is a metric. We further show that the problem admits a polynomial sparsifier, that is, a kernel of size O(k^{|D|+1}) that is independent of the metric mu. With the stronger condition that mu is described by the distances of leaves in a tree, we parameterize by a gap parameter (q - p) between the cost of a true solution q and a `discrete relaxation\u27 p and achieve a running time of O(|D|^{q-p} |T|m + |T|phi(n,m)) where T is the size of the tree over which mu is defined and phi(n,m) is the running time of a max-flow computation. We achieve a similar result for the more general Metric Labelling, while also allowing mu to be the distance metric between an arbitrary subset of nodes in a tree using tools from the theory of VCSPs. We expect the methods used in the latter result to have further applications

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Reconstructing Phylogenetic Tree From Multipartite Quartet System

    Get PDF
    A phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa in which the leaves correspond to taxa and the non-leaves correspond to speciations. One of important problems in phylogenetic analysis is to assemble a global phylogenetic tree from smaller pieces of phylogenetic trees, particularly, quartet trees. Quartet Compatibility is to decide whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard but there are only a few results known for polynomial-time solvable subclasses. In this paper, we introduce two novel classes of quartet systems, called complete multipartite quartet system and full multipartite quartet system, and present polynomial time algorithms for Quartet Compatibility for these systems. We also see that complete/full multipartite quartet systems naturally arise from a limited situation of block-restricted measurement
    corecore