43,753 research outputs found

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids: classical tests

    Get PDF
    In an effort to study the applicability of adaptive mesh refinement (AMR) techniques to atmospheric models an interpolation-based spectral element shallow water model on a cubed-sphere grid is compared to a block-structured finite volume method in latitude-longitude geometry. Both models utilize a non-conforming adaptation approach which doubles the resolution at fine-coarse mesh interfaces. The underlying AMR libraries are quad-tree based and ensure that neighboring regions can only differ by one refinement level. The models are compared via selected test cases from a standard test suite for the shallow water equations. They include the advection of a cosine bell, a steady-state geostrophic flow, a flow over an idealized mountain and a Rossby-Haurwitz wave. Both static and dynamics adaptations are evaluated which reveal the strengths and weaknesses of the AMR techniques. Overall, the AMR simulations show that both models successfully place static and dynamic adaptations in local regions without requiring a fine grid in the global domain. The adaptive grids reliably track features of interests without visible distortions or noise at mesh interfaces. Simple threshold adaptation criteria for the geopotential height and the relative vorticity are assessed.Comment: 25 pages, 11 figures, preprin

    On the Verification of a WiMax Design Using Symbolic Simulation

    Get PDF
    In top-down multi-level design methodologies, design descriptions at higher levels of abstraction are incrementally refined to the final realizations. Simulation based techniques have traditionally been used to verify that such model refinements do not change the design functionality. Unfortunately, with computer simulations it is not possible to completely check that a design transformation is correct in a reasonable amount of time, as the number of test patterns required to do so increase exponentially with the number of system state variables. In this paper, we propose a methodology for the verification of conformance of models generated at higher levels of abstraction in the design process to the design specifications. We model the system behavior using sequence of recurrence equations. We then use symbolic simulation together with equivalence checking and property checking techniques for design verification. Using our proposed method, we have verified the equivalence of three WiMax system models at different levels of design abstraction, and the correctness of various system properties on those models. Our symbolic modeling and verification experiments show that the proposed verification methodology provides performance advantage over its numerical counterpart.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Towards an Adaptive Skeleton Framework for Performance Portability

    Get PDF
    The proliferation of widely available, but very different, parallel architectures makes the ability to deliver good parallel performance on a range of architectures, or performance portability, highly desirable. Irregularly-parallel problems, where the number and size of tasks is unpredictable, are particularly challenging and require dynamic coordination. The paper outlines a novel approach to delivering portable parallel performance for irregularly parallel programs. The approach combines declarative parallelism with JIT technology, dynamic scheduling, and dynamic transformation. We present the design of an adaptive skeleton library, with a task graph implementation, JIT trace costing, and adaptive transformations. We outline the architecture of the protoype adaptive skeleton execution framework in Pycket, describing tasks, serialisation, and the current scheduler.We report a preliminary evaluation of the prototype framework using 4 micro-benchmarks and a small case study on two NUMA servers (24 and 96 cores) and a small cluster (17 hosts, 272 cores). Key results include Pycket delivering good sequential performance e.g. almost as fast as C for some benchmarks; good absolute speedups on all architectures (up to 120 on 128 cores for sumEuler); and that the adaptive transformations do improve performance
    corecore