2,580 research outputs found

    Effectiveness of landmark analysis for establishing locality in p2p networks

    Get PDF
    Locality to other nodes on a peer-to-peer overlay network can be established by means of a set of landmarks shared among the participating nodes. Each node independently collects a set of latency measures to landmark nodes, which are used as a multi-dimensional feature vector. Each peer node uses the feature vector to generate a unique scalar index which is correlated to its topological locality. A popular dimensionality reduction technique is the space filling Hilbert’s curve, as it possesses good locality preserving properties. However, there exists little comparison between Hilbert’s curve and other techniques for dimensionality reduction. This work carries out a quantitative analysis of their properties. Linear and non-linear techniques for scaling the landmark vectors to a single dimension are investigated. Hilbert’s curve, Sammon’s mapping and Principal Component Analysis have been used to generate a 1d space with locality preserving properties. This work provides empirical evidence to support the use of Hilbert’s curve in the context of locality preservation when generating peer identifiers by means of landmark vector analysis. A comparative analysis is carried out with an artificial 2d network model and with a realistic network topology model with a typical power-law distribution of node connectivity in the Internet. Nearest neighbour analysis confirms Hilbert’s curve to be very effective in both artificial and realistic network topologies. Nevertheless, the results in the realistic network model show that there is scope for improvements and better techniques to preserve locality information are required

    Multiple-Tree Push-based Overlay Streaming

    Full text link
    Multiple-Tree Overlay Streaming has attracted a great amount of attention from researchers in the past years. Multiple-tree streaming is a promising alternative to single-tree streaming in terms of node dynamics and load balancing, among others, which in turn addresses the perceived video quality by the streaming user on node dynamics or when heterogeneous nodes join the network. This article presents a comprehensive survey of the different aproaches and techniques used in this research area. In this paper we identify node-disjointness as the property most approaches aim to achieve. We also present an alternative technique which does not try to achieve this but does local optimizations aiming global optimizations. Thus, we identify this property as not being absolute necessary for creating robust and heterogeneous multi-tree overlays. We identify two main design goals: robustness and support for heterogeneity, and classify existing approaches into these categories as their main focus

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) have recently received an increasing interest. They are now expected to be deployed for long periods of time, thus requiring software updates. Updating the software code automatically on a huge number of sensors is a tremendous task, as ''by hand'' updates can obviously not be considered, especially when all participating sensors are embedded on mobile entities. In this paper, we investigate an approach to automatically update software in mobile sensor-based application when no localization mechanism is available. We leverage the peer-to-peer cooperation paradigm to achieve a good trade-off between reliability and scalability of code propagation. More specifically, we present the design and evaluation of GCP ({\emph Gossip-based Code Propagation}), a distributed software update algorithm for mobile wireless sensor networks. GCP relies on two different mechanisms (piggy-backing and forwarding control) to improve significantly the load balance without sacrificing on the propagation speed. We compare GCP against traditional dissemination approaches. Simulation results based on both synthetic and realistic workloads show that GCP achieves a good convergence speed while balancing the load evenly between sensors

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-
    • …
    corecore