2,083 research outputs found

    A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks

    Get PDF
    We consider the channel assignment problem in a multi-radio wireless mesh network that involves assigning channels to radio interfaces for achieving efficient channel utilization. We present a graph-theoretic formulation of the channel assignment guided by a novel topology control perspective, and show that the resulting optimization problem is NP-complete. We also present an ILP formulation that is used for obtaining a lower bound for the optimum. We then develop a new greedy heuristic channel assignment algorithm (termed CLICA) for finding connected, low interference topologies by utilizing multiple channels. Our evaluations show that the proposed CLICA algorithm exhibits similar behavior and comparable performance relative to the optimum bound with respect to interference and capacity measures. Moreover, our extensive simulation studies show that it can provide a large reduction in interference even with a small number of radios per node, which in turn leads to significant gains in both link layer and multihop performance in 802.11-based multi-radio mesh networks

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    DECT-2020 New Radio: The Next Step Towards 5G Massive Machine-Type Communications

    Get PDF
    Massive machine type communications (mMTC) is one of the cornerstone services that have to be supported by 5G systems. 3GPP has already introduced LTE-M and NB-IoT, often referred to as cellular IoT, in 3GPP Releases 13, 14, and 15 and submitted these technologies as part of 3GPP IMT-2020 (i.e., 5G) technology submission to ITU-R. Even though NB-IoT and LTE-M have shown to satisfy 5G mMTC requirements defined by ITU-R, it is expected that these cellular IoT solutions will not address all aspects of IoT and ongoing digitalization, including the support for direct communication between "things" with flexible deployments, different business models, as well as support for even higher node densities and enhanced coverage. In this paper, we introduce the DECT-2020 standard recently published by ETSI for mMTC communications. We evaluate its performance and compare it to the existing LPWAN solutions showing that it outperforms those in terms of supported density of nodes while still keeping delay and loss guarantees at the required level.Comment: Author-Submitted Paper to IEEE Communications Magazine, 7 pages, 4 figures, 2 table

    A study on stryi-icnos potatorum and pisum sativum as natural coagulants for meat food processing wastewater

    Get PDF
    Slow maintained load test is widely used by contractors in Malaysia to ensure the driven pile could accommodate the design load of the structure. Slow maintained load test is a test to determine load-settlement curve and pile capacity for a period of time using conventional load test. Conventional static pile load test equipment is large in size thus making it heavier and takes a long time to install. In addition, it consumes a lot of space which causes congestion at construction sites. Therefore, the objective of this thesis is to conduct a conventional load test by replacing the pile kentledge load with anchorage and reaction pile. Preparations of ten designs comprising six commercial designs were reviewed. In addition, four proposed designs were suggested for the setup. Final design was produced based on its safety factors and criteria referred via literature review. The test frame consists of reaction frame with four reaction helical pile with two helixes per reaction pile. The deformation shapes, safety factor, stress, and strain of the design and finite element of the model has been analysed with the use of SolidWorks and Pia.xis 30 software. SolidWorks software emphasizes on the model load-deflection relationship while Plaxis 30 ensures a correlation of reaction between pile uplift force and soil. Then, the model was tested on site to determine the relationship between physical load­deflection and pile-soil uplift force. The results of uplift force and displacement for numerical and physical test were nearly identical which increment of load­displacement graph pattern. The higher the uplift force, the higher the displacement obtained. In conclusion, the result obtained and the design may be considered as a guideline for future application of sustainable slow maintained pile load test
    • …
    corecore