2,130 research outputs found

    Sheaf Theory as a Foundation for Heterogeneous Data Fusion

    Get PDF
    A major impediment to scientific progress in many fields is the inability to make sense of the huge amounts of data that have been collected via experiment or computer simulation. This dissertation provides tools to visualize, represent, and analyze the collection of sensors and data all at once in a single combinatorial geometric object. Encoding and translating heterogeneous data into common language are modeled by supporting objects. In this methodology, the behavior of the system based on the detection of noise in the system, possible failure in data exchange and recognition of the redundant or complimentary sensors are studied via some related geometric objects. Applications of the constructed methodology are described by two case studies: one from wildfire threat monitoring and the other from air traffic monitoring. Both cases are distributed (spatial and temporal) information systems. The systems deal with temporal and spatial fusion of heterogeneous data obtained from multiple sources, where the schema, availability and quality vary. The behavior of both systems is explained thoroughly in terms of the detection of the failure in the systems and the recognition of the redundant and complimentary sensors. A comparison between the methodology in this dissertation and the alternative methods is described to further verify the validity of the sheaf theory method. It is seen that the method has less computational complexity in both space and time

    Computing Multidimensional Persistence

    Full text link
    The theory of multidimensional persistence captures the topology of a multifiltration -- a multiparameter family of increasing spaces. Multifiltrations arise naturally in the topological analysis of scientific data. In this paper, we give a polynomial time algorithm for computing multidimensional persistence. We recast this computation as a problem within computational algebraic geometry and utilize algorithms from this area to solve it. While the resulting problem is Expspace-complete and the standard algorithms take doubly-exponential time, we exploit the structure inherent withing multifiltrations to yield practical algorithms. We implement all algorithms in the paper and provide statistical experiments to demonstrate their feasibility.Comment: This paper has been withdrawn by the authors. Journal of Computational Geometry, 1(1) 2010, pages 72-100. http://jocg.org/index.php/jocg/article/view/1

    Distributed Coverage Verification in Sensor Networks Without Location Information

    Get PDF
    In this paper, we present three distributed algorithms for coverage verification in sensor networks with no location information. We demonstrate how, in the absence of localization devices, simplicial complexes and tools from algebraic topology can be used in providing valuable information about the properties of the cover. Our approach is based on computation of homologies of the Rips complex corresponding to the sensor network. First, we present a decentralized scheme based on Laplacian flows to compute a generator of the first homology, which represents coverage holes. Then, we formulate the problem of localizing coverage holes as an optimization problem for computing a sparse generator of the first homology. Furthermore, we show that one can detect redundancies in the sensor network by finding a sparse generator of the second homology of the cover relative to its boundary. We demonstrate how subgradient methods can be used in solving these optimization problems in a distributed manner. Finally, we provide simulations that illustrate the performance of our algorithms
    • …
    corecore