576 research outputs found

    A topological approach to transductions

    Get PDF
    AbstractThis paper is a contribution to the mathematical foundations of the theory of automata. We give a topological characterization of the transductions Ï„ from a monoid M into a monoid N, such that if R is a recognizable subset of N,Ï„-1(R) is a recognizable subset of M. We impose two conditions on the monoids, which are fullfilled in all cases of practical interest: the monoids must be residually finite and, for every positive integer n, must have only finitely many congruences of index n. Our solution proceeds in two steps. First we show that such a monoid, equipped with the so-called Hall distance, is a metric space whose completion is compact. Next we prove that Ï„ can be lifted to a map Ï„^ from M into the set of compact subsets of the completion of N. This latter set, equipped with the Hausdorff metric, is again a compact monoid. Finally, our main result states that Ï„-1 preserves recognizable sets if and only if Ï„^ is continuous

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time

    Order Invariance on Decomposable Structures

    Full text link
    Order-invariant formulas access an ordering on a structure's universe, but the model relation is independent of the used ordering. Order invariance is frequently used for logic-based approaches in computer science. Order-invariant formulas capture unordered problems of complexity classes and they model the independence of the answer to a database query from low-level aspects of databases. We study the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on restricted classes of structures that admit certain forms of tree decompositions (not necessarily of bounded width). While order-invariant MSO is more expressive than MSO and, even, CMSO (MSO with modulo-counting predicates), we show that order-invariant MSO and CMSO are equally expressive on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to Courcelle. Moreover, we show that all properties definable in order-invariant FO are also definable in MSO on these classes. These results are applications of a theorem that shows how to lift up definability results for order-invariant logics from the bags of a graph's tree decomposition to the graph itself.Comment: Accepted for LICS 201

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange

    Continuity of Functional Transducers: A Profinite Study of Rational Functions

    Get PDF
    A word-to-word function is continuous for a class of languages~V\mathcal{V} if its inverse maps V\mathcal{V}_languages to~V\mathcal{V}. This notion provides a basis for an algebraic study of transducers, and was integral to the characterization of the sequential transducers computable in some circuit complexity classes. Here, we report on the decidability of continuity for functional transducers and some standard classes of regular languages. To this end, we develop a robust theory rooted in the standard profinite analysis of regular languages. Since previous algebraic studies of transducers have focused on the sole structure of the underlying input automaton, we also compare the two algebraic approaches. We focus on two questions: When are the automaton structure and the continuity properties related, and when does continuity propagate to superclasses

    Continuity and Rational Functions

    Get PDF
    A word-to-word function is continuous for a class of languages V if its inverse maps V languages to V. This notion provides a basis for an algebraic study of transducers, and was integral to the characterization of the sequential transducers computable in some circuit complexity classes. Here, we report on the decidability of continuity for functional transducers and some standard classes of regular languages. Previous algebraic studies of transducers have focused on the structure of the underlying input automaton, disregarding the output. We propose a comparison of the two algebraic approaches through two questions: When are the automaton structure and the continuity properties related, and when does continuity propagate to superclasses

    Transducers from Rewrite Rules with Backreferences

    Full text link
    Context sensitive rewrite rules have been widely used in several areas of natural language processing, including syntax, morphology, phonology and speech processing. Kaplan and Kay, Karttunen, and Mohri & Sproat have given various algorithms to compile such rewrite rules into finite-state transducers. The present paper extends this work by allowing a limited form of backreferencing in such rules. The explicit use of backreferencing leads to more elegant and general solutions.Comment: 8 pages, EACL 1999 Berge
    • …
    corecore