55 research outputs found

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Nano-Communication for Biomedical Applications: A Review on the State-of-the-Art From Physical Layers to Novel Networking Concepts

    Get PDF
    We review EM modeling of the human body, which is essential for in vivo wireless communication channel characterization; discuss EM wave propagation through human tissues; present the choice of operational frequencies based on current standards and examine their effects on communication system performance; discuss the challenges of in vivo antenna design, as the antenna is generally considered to be an integral part of the in vivo channel; review the propagation models for the in vivo wireless communication channel and discuss the main differences relative to the ex vivo channel; and address several open research problems and future research directions

    Computing and communications for the software-defined metamaterial paradigm: a context analysis

    Get PDF
    Metamaterials are artificial structures that have recently enabled the realization of novel electromagnetic components with engineered and even unnatural functionalities. Existing metamaterials are specifically designed for a single application working under preset conditions (e.g., electromagnetic cloaking for a fixed angle of incidence) and cannot be reused. Software-defined metamaterials (SDMs) are a much sought-after paradigm shift, exhibiting electromagnetic properties that can be reconfigured at runtime using a set of software primitives. To enable this new technology, SDMs require the integration of a network of controllers within the structure of the metamaterial, where each controller interacts locally and communicates globally to obtain the programmed behavior. The design approach for such controllers and the interconnection network, however, remains unclear due to the unique combination of constraints and requirements of the scenario. To bridge this gap, this paper aims to provide a context analysis from the computation and communication perspectives. Then, analogies are drawn between the SDM scenario and other applications both at the micro and nano scales, identifying possible candidates for the implementation of the controllers and the intra-SDM network. Finally, the main challenges of SDMs related to computing and communications are outlined.Peer ReviewedPostprint (published version

    Energy Harvesting-Aware Design for Wireless Nanonetworks

    Get PDF
    Nanotechnology advancement promises to enable a new era of computing and communication devices by shifting micro scale chip design to nano scale chip design. Nanonetworks are envisioned as artifacts of nanotechnology in the domain of networking and communication. These networks will consist of nodes of nanometer to micrometer in size, with a communication range up to 1 meter. These nodes could be used in various biomedical, industrial, and environmental monitoring applications, where a nanoscale level of sensing, monitoring, control and communication is required. The special characteristics of nanonetworks require the revisiting of network design. More specifically, nanoscale limitations, new paradigms of THz communication, and power supply via energy harvesting are the main issues that are not included in traditional network design methods. In this regard, this dissertation investigates and develops some solutions in the realization of nanonetworks. Particularly, the following major solutions are investigated. (I) The energy harvesting and energy consumption processes are modeled and evaluated simultaneously. This model includes the stochastic nature of energy arrival as well as the pulse-based communication model for energy consumption. The model identifies the effect of various parameters in this joint process. (II) Next, an optimization problem is developed to find the best combination of these parameters. Specifically, optimum values for packet size, code weight, and repetition are found in order to minimize the energy consumption while satisfying some application requirements (i.e., delay and reliability). (III) An optimum policy for energy consumption to achieve the maximum utilization of harvested energy is developed. The goal of this scheme is to take advantage of available harvested energy as much as possible while satisfying defined performance metrics. (IV) A communication scheme that tries to maximize the data throughput via a distributed and scalable coordination while avoiding the collision among neighbors is the last problem to be investigated. The goal is to design an energy harvesting-aware and distributed mechanism that could coordinate data transmission among neighbors. (V) Finally, all these solutions are combined together to create a data link layer model for nanonodes. We believe resolving these issues could be the first step towards an energy harvesting-aware network design for wireless nanosensor networks
    • …
    corecore