158 research outputs found

    Modeling and frequency tracking of marine mammal whistle calls

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Marine mammal whistle calls present an attractive medium for covert underwater communications. High quality models of the whistle calls are needed in order to synthesize natural-sounding whistles with embedded information. Since the whistle calls are composed of frequency modulated harmonic tones, they are best modeled as a weighted superposition of harmonically related sinusoids. Previous research with bottlenose dolphin whistle calls has produced synthetic whistles that sound too “clean” for use in a covert communications system. Due to the sensitivity of the human auditory system, watermarking schemes that slightly modify the fundamental frequency contour have good potential for producing natural-sounding whistles embedded with retrievable watermarks. Structured total least squares is used with linear prediction analysis to track the time-varying fundamental frequency and harmonic amplitude contours throughout a whistle call. Simulation and experimental results demonstrate the capability to accurately model bottlenose dolphin whistle calls and retrieve embedded information from watermarked synthetic whistle calls. Different fundamental frequency watermarking schemes are proposed based on their ability to produce natural sounding synthetic whistles and yield suitable watermark detection and retrieval

    Enhancing the Instantaneous Dynamic Range of Electronic Warfare Receivers Using Statistical Signal Processing

    Get PDF
    Accurately processing multiple, time-coincident signals presents a challenge to Electronic Warfare (EW) receivers, especially if the signals are close in frequency and/or mismatched in amplitude. The metric that quantifies an EW receiver\u27s ability to measure time-coincident signals is the Instantaneous Dynamic Range (IDR), defined for a given frequency estimation accuracy, a given frequency separation and a given SNR as the maximum signal amplitude ratio that can be accommodated. Using a two sinusoid time-series model, this thesis analyzes IDR for ideal intercept and parametric digital EW receivers. In general, the number of signals contained in the EW receiver measurement interval is unknown. Thus, the non-parametric Discrete Fourier Transform (DFT) is employed in an EW intercept receiver with the associated amplitude dependent spectral leakage which limits IDR. A novel method to improve the DFT-based intercept receiver IDR by compensating for the high amplitude signal\u27s spectral leakage using computationally efficient 3 bin interpolation algorithms is proposed and analyzed. For a desired frequency estimation accuracy of 1.5 bins, the method achieves an IDR of 57 dB with little frequency separation dependence when the signals are separated by more than 2 bins with a low amplitude signal SNR of 10 dB. For situations where the number of signals contained in the measurement interval is known, the IDR of an Iterative Generalized Least Squares (IGLS) algorithm-based parametric receiver is analyzed. A real and complex signal IDR Cramer-Rao Bound (IDR-CRB) is derived for parametric receivers by extending results contained in Rife. For tight frequency estimate requirements (these requirements depend on the number of measurement samples), the IDR-CRB yields achievable bounds. For less stringent frequency estimate requirements, the IDR-CRB is unrealisti

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Comparative review of methods for stability monitoring in electrical power systems and vibrating structures

    Get PDF
    This study provides a review of methods used for stability monitoring in two different fields, electrical power systems and vibration analysis, with the aim of increasing awareness of and highlighting opportunities for cross-fertilisation. The nature of the problems that require stability monitoring in both fields are discussed here as well as the approaches that have been taken. The review of power systems methods is presented in two parts: methods for ambient or normal operation and methods for transient or post-fault operation. Similarly, the review of methods for vibration analysis is presented in two parts: methods for stationary or linear time-invariant data and methods for non-stationary or non-linear time-variant data. Some observations and comments are made regarding methods that have already been applied in both fields including recommendations for the use of different sets of algorithms that have not been utilised to date. Additionally, methods that have been applied to vibration analysis and have potential for power systems stability monitoring are discussed and recommended. ďż˝ 2010 The Institution of Engineering and Technology

    Estimating localized sources of diffusion fields using spatiotemporal sensor measurements

    Get PDF
    We consider diffusion fields induced by a finite number of spatially localized sources and address the problem of estimating these sources using spatiotemporal samples of the field obtained with a sensor network. Within this framework, we consider two different time evolutions: the case where the sources are instantaneous, as well as, the case where the sources decay exponentially in time after activation. We first derive novel exact inversion formulas, for both source distributions, through the use of Green's second theorem and a family of sensing functions to compute generalized field samples. These generalized samples can then be inverted using variations of existing algebraic methods such as Prony's method. Next, we develop a novel and robust reconstruction method for diffusion fields by properly extending these formulas to operate on the spatiotemporal samples of the field. Finally, we present numerical results using both synthetic and real data to verify the algorithms proposed herein

    Ship target recognition

    Get PDF
    Includes bibliographical references.In this report the classification of ship targets using a low resolution radar system is investigated. The thesis can be divided into two major parts. The first part summarizes research into the applications of neural networks to the low resolution non-cooperative ship target recognition problem. Three very different neural architectures are investigated and compared, namely; the Feedforward Network with Back-propagation, Kohonen's Supervised Learning Vector Quantization Network, and Simpson's Fuzzy Min-Max neural network. In all cases, pre-processing in the form of the Fourier-Modified Discrete Mellin Transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93 are reported. The second part is of a purely investigative nature, and summarizes a body of research aimed at exploring new ground. The crux of this work is centered on the proposal to use synthetic range profiling in order to achieve a much higher range resolution (and hence better classification accuracies). Included in this work is a comprehensive investigation into the use of super-resolution and noise reducing eigendecomposition techniques. Algorithms investigated include the Principal Eigenvector Method, the Total Least Squares Method, and the MUSIC method. A final proposal for future research and development concerns the use of time domain averaging to improve the classification performance of the radar system. The use of an iterative correlation algorithm is investigated

    An Accurate Offline Phasor Estimation Technique For Fault Location In Series Compensated Lines

    Get PDF
    In series compensated transmission lines, current and voltage signals measured by the line protection system include considerable sub-synchronous frequency components (SSFCs) which are not sufficiently damped within a typical fault clearing time of line protection system. This does not allow accurate phasor estimation and thereby phasor-based fault location. This paper presents an accurate algorithm which effectively filters out the unwanted frequency components and noise to perform accurate phasor estimation for fault location in series compensated transmission lines. Phasor estimation of a theoretical signal is first evaluated using the proposed method, Direct-Prony analysis and 4-cycle discrete Fourier transform algorithm. Then, various fault locations of a 500 kV series compensated transmission line simulated in PSCAD/EMTDC are used to comprehensively evaluate the performance of the proposed technique. It is shown that the proposed method can effectively attenuate SSFCs and other unwanted frequency components in current and voltage signals allowing accurate phasor estimation

    A comparative study of signal processing methods for structural health monitoring

    Get PDF
    In this paper four non-parametric and five parametric signal processing techniques are reviewed and their performances are compared through application to a sample exponentially damped synthetic signal with closely-spaced frequencies representing the ambient response of structures. The non-parametric methods are Fourier transform, periodogram estimate of power spectral density, wavelet transform, and empirical mode decomposition with Hilbert spectral analysis (Hilbert-Huang transform). The parametric methods are pseudospectrum estimate using the multiple signal categorization (MUSIC), empirical wavelet transform, approximate Prony method, matrix pencil method, and the estimation of signal parameters by rotational invariance technique (ESPRIT) method. The performances of different methods are studied statistically using the Monte Carlo simulation and the results are presented in terms of average errors of multiple sample analyses

    A Compact Formulation for the â„“2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the â„“2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the â„“2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method
    • …
    corecore