1,547 research outputs found

    Spectral properties of fractional Fokker-Plank operator for the L\'evy flight in a harmonic potential

    Full text link
    We present a detailed analysis of the eigenfunctions of the Fokker-Planck operator for the L\'evy-Ornstein-Uhlenbeck process, their asymptotic behavior and recurrence relations, explicit expressions in coordinate space for the special cases of the Ornstein-Uhlenbeck process with Gaussian and with Cauchy white noise and for the transformation kernel, which maps the fractional Fokker-Planck operator of the Cauchy-Ornstein-Uhlenbeck process to the non-fractional Fokker-Planck operator of the usual Gaussian Ornstein-Uhlenbeck process. We also describe how non-spectral relaxation can be observed in bounded random variables of the L\'evy-Ornstein-Uhlenbeck process and their correlation functions.Comment: 10 pages, 5 figures, submitted to Euro. Phys. J.

    Levy targeting and the principle of detailed balance

    Full text link
    We investigate confined L\'{e}vy flights under premises of the principle of detailed balance. The master equation admits a transformation to L\'{e}vy - Schr\"{o}dinger semigroup dynamics (akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation). We solve a stochastic targeting problem for arbitrary stability index 0<ÎĽ<20<\mu <2 of L\'{e}vy drivers: given an invariant probability density function (pdf), specify the jump - type dynamics for which this pdf is a long-time asymptotic target. Our ("ÎĽ\mu-targeting") method is exemplified by Cauchy family and Gaussian target pdfs. We solve the reverse engineering problem for so-called L\'{e}vy oscillators: given a quadratic semigroup potential, find an asymptotic pdf for the associated master equation for arbitrary ÎĽ\mu

    Long-memory Gaussian processes governed by generalized Fokker-Planck equations

    Full text link
    It is well-known that the transition function of the Ornstein-Uhlenbeck process solves the Fokker-Planck equation. This standard setting has been recently generalized in different directions, for example, by considering the so-called α\alpha -stable driven Ornstein-Uhlenbeck, or by time-changing the original process with an inverse stable subordinator. In both cases, the corresponding partial differential equations involve fractional derivatives (of Riesz and Riemann-Liouville types, respectively) and the solution is not Gaussian. We consider here a new model, which cannot be expressed by a random time-change of the original process: we start by a Fokker-Planck equation (in Fourier space) with the time-derivative replaced by a new fractional differential operator. The resulting process is Gaussian and, in the stationary case, exhibits a long-range dependence. Moreover, we consider further extensions, by means of the so-called convolution-type derivative.Comment: 24, accepted for publicatio

    Manifestations of projection-induced memory: General theory and the tilted single file.

    Get PDF
    Over the years the field of non-Markovian stochastic processes and anomalous diffusion evolved from a specialized topic to mainstream theory, which transgressed the realms of physics to chemistry, biology and ecology. Numerous phenomenological approaches emerged, which can more or less successfully reproduce or account for experimental observations in condensed matter, biological and/or single-particle systems. However, as far as their predictions are concerned these approaches are not unique, often build on conceptually orthogonal ideas, and are typically employed on an ad hoc basis. It therefore seems timely and desirable to establish a systematic, mathematically unifying and clean approach starting from more fine-grained principles. Here we analyze projection-induced ergodic non-Markovian dynamics, both reversible as well as irreversible, using spectral theory. We investigate dynamical correlations between histories of projected and latent observables that give rise to memory in projected dynamics, and rigorously establish conditions under which projected dynamics is Markovian or renewal. A systematic metric is proposed for quantifying the degree of non-Markovianity. As a simple, illustrative but non-trivial example we study single file diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate Bethe ansatz. Our results provide a solid foundation for a deeper and more systematic analysis of projection-induced non-Markovian dynamics and anomalous diffusion

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde
    • …
    corecore