3,241 research outputs found

    A time- and space-optimal algorithm for the many-visits TSP

    Full text link
    The many-visits traveling salesperson problem (MV-TSP) asks for an optimal tour of nn cities that visits each city cc a prescribed number kck_c of times. Travel costs may be asymmetric, and visiting a city twice in a row may incur a non-zero cost. The MV-TSP problem finds applications in scheduling, geometric approximation, and Hamiltonicity of certain graph families. The fastest known algorithm for MV-TSP is due to Cosmadakis and Papadimitriou (SICOMP, 1984). It runs in time nO(n)+O(n3logckc)n^{O(n)} + O(n^3 \log \sum_c k_c ) and requires nΘ(n)n^{\Theta(n)} space. An interesting feature of the Cosmadakis-Papadimitriou algorithm is its \emph{logarithmic} dependence on the total length ckc\sum_c k_c of the tour, allowing the algorithm to handle instances with very long tours. The \emph{superexponential} dependence on the number of cities in both the time and space complexity, however, renders the algorithm impractical for all but the narrowest range of this parameter. In this paper we improve upon the Cosmadakis-Papadimitriou algorithm, giving an MV-TSP algorithm that runs in time 2O(n)2^{O(n)}, i.e.\ \emph{single-exponential} in the number of cities, using \emph{polynomial} space. Our algorithm is deterministic, and arguably both simpler and easier to analyse than the original approach of Cosmadakis and Papadimitriou. It involves an optimization over directed spanning trees and a recursive, centroid-based decomposition of trees.Comment: Small fixes, journal versio

    RoboTSP - A Fast Solution to the Robotic Task Sequencing Problem

    Full text link
    In many industrial robotics applications, such as spot-welding, spray-painting or drilling, the robot is required to visit successively multiple targets. The robot travel time among the targets is a significant component of the overall execution time. This travel time is in turn greatly affected by the order of visit of the targets, and by the robot configurations used to reach each target. Therefore, it is crucial to optimize these two elements, a problem known in the literature as the Robotic Task Sequencing Problem (RTSP). Our contribution in this paper is two-fold. First, we propose a fast, near-optimal, algorithm to solve RTSP. The key to our approach is to exploit the classical distinction between task space and configuration space, which, surprisingly, has been so far overlooked in the RTSP literature. Second, we provide an open-source implementation of the above algorithm, which has been carefully benchmarked to yield an efficient, ready-to-use, software solution. We discuss the relationship between RTSP and other Traveling Salesman Problem (TSP) variants, such as the Generalized Traveling Salesman Problem (GTSP), and show experimentally that our method finds motion sequences of the same quality but using several orders of magnitude less computation time than existing approaches.Comment: 6 pages, 7 figures, 1 tabl

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    Maximum Scatter TSP in Doubling Metrics

    Full text link
    We study the problem of finding a tour of nn points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.50.5-approximation for the metric version of the problem and showed that this is the best possible ratio achievable in polynomial time (assuming PNPP \neq NP). Arkin et al. raised the question of whether a better approximation ratio can be obtained in the Euclidean plane. We answer this question in the affirmative in a more general setting, by giving a (1ϵ)(1-\epsilon)-approximation algorithm for dd-dimensional doubling metrics, with running time O~(n3+2O(KlogK))\tilde{O}\big(n^3 + 2^{O(K \log K)}\big), where K(13ϵ)dK \leq \left( \frac{13}{\epsilon} \right)^d. As a corollary we obtain (i) an efficient polynomial-time approximation scheme (EPTAS) for all constant dimensions dd, (ii) a polynomial-time approximation scheme (PTAS) for dimension d=loglogn/cd = \log\log{n}/c, for a sufficiently large constant cc, and (iii) a PTAS for constant dd and ϵ=Ω(1/loglogn)\epsilon = \Omega(1/\log\log{n}). Furthermore, we show the dependence on dd in our approximation scheme to be essentially optimal, unless Satisfiability can be solved in subexponential time
    corecore