33 research outputs found

    Modeling Human Atrial Patho-Electrophysiology from Ion Channels to ECG - Substrates, Pharmacology, Vulnerability, and P-Waves

    Get PDF
    Half of the patients suffering from atrial fibrillation (AF) cannot be treated adequately, today. This book presents multi-scale computational methods to advance our understanding of patho-mechanisms, to improve the diagnosis of patients harboring an arrhythmogenic substrate, and to tailor therapy. The modeling pipeline ranges from ion channels on the subcellular level up to the ECG on the body surface. The tailored therapeutic approaches carry the potential to reduce the burden of AF

    Modeling Human Atrial Patho-Electrophysiology from Ion Channels to ECG - Substrates, Pharmacology, Vulnerability, and P-Waves

    Get PDF
    Half of the patients suffering from atrial fibrillation (AF) cannot be treated adequately, today. This thesis presents multi-scale computational methods to advance our understanding of patho-mechanisms, to improve the diagnosis of patients harboring an arrhythmogenic substrate, and to tailor therapy. The modeling pipeline ranges from ion channels on the subcellular level up to the ECG on the body surface. The tailored therapeutic approaches carry the potential to reduce the burden of AF

    Multidisciplinary Design Optimization for Space Applications

    Get PDF
    Multidisciplinary Design Optimization (MDO) has been increasingly studied in aerospace engineering with the main purpose of reducing monetary and schedule costs. The traditional design approach of optimizing each discipline separately and manually iterating to achieve good solutions is substituted by exploiting the interactions between the disciplines and concurrently optimizing every subsystem. The target of the research was the development of a flexible software suite capable of concurrently optimizing the design of a rocket propellant launch vehicle for multiple objectives. The possibility of combining the advantages of global and local searches have been exploited in both the MDO architecture and in the selected and self developed optimization methodologies. Those have been compared according to computational efficiency and performance criteria. Results have been critically analyzed to identify the most suitable optimization approach for the targeted MDO problem

    A Deep Feedforward Neural Network and Shallow Architectures Effectiveness Comparison: Flight Delays Classification Perspective

    Get PDF
    Flight delays have negatively impacted the socio-economics state of passengers, airlines and airports, resulting in huge economic losses. Hence, it has become necessary to correctly predict their occurrences in decision-making because it is important for the effective management of the aviation industry. Developing accurate flight delays classification models depends mostly on the air transportation system complexity and the infrastructure available in airports, which may be a region-specific issue. However, no specific prediction or classification model can handle the individual characteristics of all airlines and airports at the same time. Hence, the need to further develop and compare predictive models for the aviation decision system of the future cannot be over-emphasised. In this research, flight on-time data records from the United State Bureau of Transportation Statistics was employed to evaluate the performances of Deep Feedforward Neural Network, Neural Network, and Support Vector Machine models on a binary classification problem. The research revealed that the models achieved different accuracies of flight delay classifications. The Support Vector Machine had the worst average accuracy than Neural Network and Deep Feedforward Neural Network in the initial experiment. The Deep Feedforward Neural Network outperformed Support Vector Machines and Neural Network with the best average percentage accuracies. Going further to investigate the Deep Feedforward Neural Network architecture on different parameters against itself suggest that training a Deep Feedforward Neural Network algorithm, regardless of data training size, the classification accuracy peaks. We examine which number of epochs works best in our flight delay classification settings for the Deep Feedforward Neural Network. Our experiment results demonstrate that having many epochs affects the convergence rate of the model; unlike when hidden layers are increased, it does not ensure better or higher accuracy in a binary classification of flight delays. Finally, we recommended further studies on the applicability of the Deep Feedforward Neural Network in flight delays prediction with specific case studies of either airlines or airports to check the impact on the model's performance

    Adaptive Equalization Based on Particle Swarm Optimization Techniques

    Get PDF
    corecore