35,697 research outputs found

    Discrete Adaptive Second Order Sliding Mode Controller Design with Application to Automotive Control Systems with Model Uncertainties

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient solution for tracking control problems of highly nonlinear systems with a great deal of uncertainty. High frequency oscillations due to chattering phenomena and sensitivity to data sampling imprecisions limit the digital implementation of conventional first order continuous-time SMC. Higher order discrete SMC is an effective solution to reduce the chattering during the controller software implementation, and also overcome imprecisions due to data sampling. In this paper, a new adaptive second order discrete sliding mode control (DSMC) formulation is presented to mitigate data sampling imprecisions and uncertainties within the modeled plant's dynamics. The adaptation mechanism is derived based on a Lyapunov stability argument which guarantees asymptotic stability of the closed-loop system. The proposed controller is designed and tested on a highly nonlinear combustion engine tracking control problem. The simulation test results show that the second order DSMC can improve the tracking performance up to 80% compared to a first order DSMC under sampling and model uncertainties.Comment: 6 pages, 6 figures, 2017 American Control Conferenc

    Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher order sliding modes. To this end, in this paper, a new formulation of an adaptive second order discrete sliding mode control (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new Invariance Principle, not only the asymptotic stability of the controller is guaranteed, but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real-time for a highly nonlinear control problem in spark ignition combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl

    Temperature Regulation in Multicore Processors Using Adjustable-Gain Integral Controllers

    Full text link
    This paper considers the problem of temperature regulation in multicore processors by dynamic voltage-frequency scaling. We propose a feedback law that is based on an integral controller with adjustable gain, designed for fast tracking convergence in the face of model uncertainties, time-varying plants, and tight computing-timing constraints. Moreover, unlike prior works we consider a nonlinear, time-varying plant model that trades off precision for simple and efficient on-line computations. Cycle-level, full system simulator implementation and evaluation illustrates fast and accurate tracking of given temperature reference values, and compares favorably with fixed-gain controllers.Comment: 8 pages, 6 figures, IEEE Conference on Control Applications 2015, Accepted Versio

    Practical Implementation of Attitude-Control Algorithms for an Underactuated Satellite

    Get PDF
    The challenging problem of controlling the attitude of satellites subject to actuator failures has been the subject of increased attention in recent years. The problem of controlling the attitude of a satellite on all three axes with two reaction wheels is addressed in this paper. This system is controllable in a zero-momentum mode. Three-axis attitude stability is proven by imposing a singular quaternion feedback law to the angular velocity trajectories.Two approaches are proposed and compared to achieve three-axis control: The first one does not require angular velocity measurements and is based on the assumption of a perfect zero momentum, while the second approach consists of tracking the desired angular velocity trajectories. The full-state feedback is a nonlinear singular controller. In-orbit tests of the first approach provide an unprecedented practical proof of three-axis stability with two control torques. The angular velocity tracking approach is shown to be less efficient using the nonlinear singular controller. However, when inverse optimization theory is applied to enhance the nonlinear singular controller, the angular velocity tracking approach is shown to be the most efficient. The resulting switched inverse optimal controller allows for a significant enhancement of settling time, for a prescribed level of the integrated torque

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Lyapunov Self-triggered Controller for Nonlinear Trajectory Tracking of Unicycle-type Robot

    Get PDF
    This paper focuses on the design and implementation of an aperiodic control of nonholonomic robots tracking nonlinear trajectories. The main objective of our controller is to reduce the number of updates while preserving control performance guarantees. To solve the problem in a more efficient way, we design two aperiodic control solutions, one to reach a target point and a second to track a predefined nonlinear trajectory. Unlike most previous work, our triggering condition only updates the controller when the time derivative of the Lyapunov function becomes nonnegative, without taking into account the measurement error. Multiple simulated results with different initial conditions are included, showing how our control solution significantly reduces the need for communication in comparison with periodic and other aperiodic strategies while preserving a desired tracking performance. To validate the proposal experimental tests of each control technique with a P3-DX robot remotely controlled through an IEEE 802.11g wireless network are also carried out

    Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems

    Get PDF
    The increasing energy demand and the target to reduce environmental pollution make it essential to use efficient and environment-friendly renewable energy systems. One of these systems is the Photovoltaic (PV) system which generates energy subject to variation in environmental conditions such as temperature and solar radiations. In the presence of these variations, it is necessary to extract the maximum power via the maximum power point tracking (MPPT) controller. This paper presents a nonlinear generalized global sliding mode controller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A GGSMC is designed to track the FFNN generated reference subject to varying temperature and sunlight. The proposed control strategy, along with a modified sliding mode control, eliminates the reaching phase so that the sliding mode exists throughout the time. The system response observes no chattering and harmonic distortions. Finally, the simulation results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and rapid tracking of the proposed control strategy. The results are compared with standard results of the nonlinear backstepping controller under abrupt changes in environmental conditions for further validation
    corecore