3,307 research outputs found

    Size of Sets with Small Sensitivity: a Generalization of Simon's Lemma

    Full text link
    We study the structure of sets S{0,1}nS\subseteq\{0, 1\}^n with small sensitivity. The well-known Simon's lemma says that any S{0,1}nS\subseteq\{0, 1\}^n of sensitivity ss must be of size at least 2ns2^{n-s}. This result has been useful for proving lower bounds on sensitivity of Boolean functions, with applications to the theory of parallel computing and the "sensitivity vs. block sensitivity" conjecture. In this paper, we take a deeper look at the size of such sets and their structure. We show an unexpected "gap theorem": if S{0,1}nS\subseteq\{0, 1\}^n has sensitivity ss, then we either have S=2ns|S|=2^{n-s} or S322ns|S|\geq \frac{3}{2} 2^{n-s}. This is shown via classifying such sets into sets that can be constructed from low-sensitivity subsets of {0,1}n\{0, 1\}^{n'} for n<nn'<n and irreducible sets which cannot be constructed in such a way and then proving a lower bound on the size of irreducible sets. This provides new insights into the structure of low sensitivity subsets of the Boolean hypercube {0,1}n\{0, 1\}^n

    Certificate games

    Get PDF
    We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output ii such that xiyix_i\neq y_i (zero-communication setting). We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is upper bounded by Randomized query and Certificate complexity. On the other hand, it is lower bounded by fractional and randomized certificate complexity, making it a good candidate to prove strong lower bounds on randomized query complexity. Complexity in the private coin model is bounded from below by zero-error randomized query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. Whereas the public coin certificate game complexity is bounded from above by randomized query complexity, the quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of nn on the quantum certificate game complexity of the OROR function, whose quantum query complexity is Θ(n)\Theta(\sqrt{n}), then go on to show that this ``non-signaling bottleneck'' applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We consider the single-bit version of certificate games (inputs of the two players have Hamming distance 11). We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, giving a new characterization of sensitivity. The single-bit version with private randomness is equal to λ2\lambda^2, where λ\lambda is the spectral sensitivity.Comment: 43 pages, 1 figure, ITCS202

    On the Sensitivity Complexity of k-Uniform Hypergraph Properties

    Get PDF
    In this paper we investigate the sensitivity complexity of hypergraph properties. We present a k-uniform hypergraph property with sensitivity complexity O(n^{ceil(k/3)}) for any k >= 3, where n is the number of vertices. Moreover, we can do better when k = 1 (mod 3) by presenting a k-uniform hypergraph property with sensitivity O(n^{ceil(k/3)-1/2}). This result disproves a conjecture of Babai, which conjectures that the sensitivity complexity of k-uniform hypergraph properties is at least Omega(n^{k/2}). We also investigate the sensitivity complexity of other weakly symmetric functions and show that for many classes of transitive-invariant Boolean functions the minimum achievable sensitivity complexity can be O(N^{1/3}), where N is the number of variables. Finally, we give a lower bound for sensitivity of k-uniform hypergraph properties, which implies the sensitivity conjecture of k-uniform hypergraph properties for any constant k

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference
    corecore