135 research outputs found

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an Δ\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log⁥(M)d+O(1)⋅log⁥(1/Δ)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an Δ\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(log⁥S)⋅log⁥(1/Δ)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    On the Distributed Complexity of Large-Scale Graph Computations

    Full text link
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k≄2k \geq 2 machines jointly perform computations on graphs with nn nodes (typically, n≫kn \gg k). The input graph is assumed to be initially randomly partitioned among the kk machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication {\em rounds} of the computation. Our main contribution is the {\em General Lower Bound Theorem}, a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. The General Lower Bound Theorem is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic and this theorem can be used in a "cookbook" fashion to show distributed lower bounds in the context of several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds for the round complexity of two fundamental graph problems, namely {\em PageRank computation} and {\em triangle enumeration}. Our approach, as demonstrated in the case of PageRank, can yield tight lower bounds for problems (including, and especially, under a stochastic partition of the input) where communication complexity techniques are not obvious. Our approach, as demonstrated in the case of triangle enumeration, can yield stronger round lower bounds as well as message-round tradeoffs compared to approaches that use communication complexity techniques

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(log⁥n)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(log⁥n)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model

    Get PDF
    We present the first super-linear lower bounds for natural graph problems in the CONGEST model, answering a long-standing open question. Specifically, we show that any exact computation of a minimum vertex cover or a maximum independent set requires a near-quadratic number of rounds in the CONGEST model, as well as any algorithm for computing the chromatic number of the graph. We further show that such strong lower bounds are not limited to NP-hard problems, by showing two simple graph problems in P which require a quadratic and near-quadratic number of rounds. Finally, we address the problem of computing an exact solution to weighted all-pairs-shortest-paths (APSP), which arguably may be considered as a candidate for having a super-linear lower bound. We show a simple linear lower bound for this problem, which implies a separation between the weighted and unweighted cases, since the latter is known to have a sub-linear complexity. We also formally prove that the standard Alice-Bob framework is incapable of providing a super-linear lower bound for exact weighted APSP, whose complexity remains an intriguing open question

    A time- and message-optimal distributed algorithm for minimum spanning trees

    Get PDF
    This paper presents a randomized Las Vegas distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in O~(D+n)\tilde{O}(D + \sqrt{n}) time and exchanges O~(m)\tilde{O}(m) messages (both with high probability), where nn is the number of nodes of the network, DD is the diameter, and mm is the number of edges. This is the first distributed MST algorithm that matches \emph{simultaneously} the time lower bound of Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) [Elkin, SIAM J. Comput. 2006] and the message lower bound of Ω(m)\Omega(m) [Kutten et al., J.ACM 2015] (which both apply to randomized algorithms). The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound {\em does not} work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires \emph{both} Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) rounds and Ω(m)\Omega(m) messages

    Towards a Stronger Theory for Permutation-based Evolutionary Algorithms

    Full text link
    While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based (1+1)(1+1) EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the \textsc{LeadingOnes} and \textsc{Jump} benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation σ\sigma into another one τ\tau, but also the precise cycle structure of στ−1\sigma \tau^{-1}. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of Θ(n)\Theta(n). Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order mΘ(m)m^{\Theta(m)} on jump functions with jump size~mm.%Comment: To appear in the proceedings of GECCO 2022. This version contains the proofs omitted in the proceedings version for reasons of spac
    • 

    corecore