108,888 research outputs found

    Consensus dynamics on random rectangular graphs

    Get PDF
    A random rectangular graph (RRG) is a generalization of the random geometric graph (RGG) in which the nodes are embedded into a rectangle with side lengths aa and b=1/ab=1/a, instead of on a unit square [0,1]2. Two nodes are then connected if and only if they are separated at a Euclidean distance smaller than or equal to a certain threshold radius r. When a=1 the RRG is identical to the RGG. Here we apply the consensus dynamics model to the RRG. Our main result is a lower bound for the time of consensus, i.e., the time at which the network reaches a global consensus state. To prove this result we need first to find an upper bound for the algebraic connectivity of the RRG, i.e., the second smallest eigenvalue of the combinatorial Laplacian of the graph. This bound is based on a tight lower bound found for the graph diameter. Our results prove that as the rectangle in which the nodes are embedded becomes more elongated, the RRG becomes a ’large-world’, i.e., the diameter grows to infinity, and a poorly-connected graph, i.e., the algebraic connectivity decays to zero. The main consequence of these findings is the proof that the time of consensus in RRGs grows to infinity as the rectangle becomes more elongated. In closing, consensus dynamics in RRGs strongly depend on the geometric characteristics of the embedding space, and reaching the consensus state becomes more difficult as the rectangle is more elongated

    Relaxed Byzantine Vector Consensus

    Get PDF
    Exact Byzantine consensus problem requires that non-faulty processes reach agreement on a decision (or output) that is in the convex hull of the inputs at the non-faulty processes. It is well-known that exact consensus is impossible in an asynchronous system in presence of faults, and in a synchronous system, n>=3f+1 is tight on the number of processes to achieve exact Byzantine consensus with scalar inputs, in presence of up to f Byzantine faulty processes. Recent work has shown that when the inputs are d-dimensional vectors of reals, n>=max(3f+1,(d+1)f+1) is tight to achieve exact Byzantine consensus in synchronous systems, and n>= (d+2)f+1 for approximate Byzantine consensus in asynchronous systems. Due to the dependence of the lower bound on vector dimension d, the number of processes necessary becomes large when the vector dimension is large. With the hope of reducing the lower bound on n, we consider two relaxed versions of Byzantine vector consensus: k-Relaxed Byzantine vector consensus and (delta,p)-Relaxed Byzantine vector consensus. In k-relaxed consensus, the validity condition requires that the output must be in the convex hull of projection of the inputs onto any subset of k-dimensions of the vectors. For (delta,p)-consensus the validity condition requires that the output must be within distance delta of the convex hull of the inputs of the non-faulty processes, where L_p norm is used as the distance metric. For (delta,p)-consensus, we consider two versions: in one version, delta is a constant, and in the second version, delta is a function of the inputs themselves. We show that for k-relaxed consensus and (delta,p)-consensus with constant delta>=0, the bound on n is identical to the bound stated above for the original vector consensus problem. On the other hand, when delta depends on the inputs, we show that the bound on n is smaller when d>=3

    Tight Bounds for Asymptotic and Approximate Consensus

    Get PDF
    We study the performance of asymptotic and approximate consensus algorithms under harsh environmental conditions. The asymptotic consensus problem requires a set of agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values. This problem, and the related approximate consensus problem, are fundamental building blocks in distributed systems where exact consensus among agents is not required or possible, e.g., man-made distributed control systems, and have applications in the analysis of natural distributed systems, such as flocking and opinion dynamics. We prove tight lower bounds on the contraction rates of asymptotic consensus algorithms in dynamic networks, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented in [Charron-Bost et al., ICALP'16] for certain dynamic networks, including the weakest dynamic network model in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes. Central to our lower bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks

    On the Smallest Eigenvalue of Grounded Laplacian Matrices

    Full text link
    We provide upper and lower bounds on the smallest eigenvalue of grounded Laplacian matrices (which are matrices obtained by removing certain rows and columns of the Laplacian matrix of a given graph). The gap between the upper and lower bounds depends on the ratio of the smallest and largest components of the eigenvector corresponding to the smallest eigenvalue of the grounded Laplacian. We provide a graph-theoretic bound on this ratio, and subsequently obtain a tight characterization of the smallest eigenvalue for certain classes of graphs. Specifically, for Erdos-Renyi random graphs, we show that when a (sufficiently small) set SS of rows and columns is removed from the Laplacian, and the probability pp of adding an edge is sufficiently large, the smallest eigenvalue of the grounded Laplacian asymptotically almost surely approaches ∣S∣p|S|p. We also show that for random dd-regular graphs with a single row and column removed, the smallest eigenvalue is Θ(dn)\Theta(\frac{d}{n}). Our bounds have applications to the study of the convergence rate in continuous-time and discrete-time consensus dynamics with stubborn or leader nodes

    Quantized Consensus ADMM for Multi-Agent Distributed Optimization

    Get PDF
    Multi-agent distributed optimization over a network minimizes a global objective formed by a sum of local convex functions using only local computation and communication. We develop and analyze a quantized distributed algorithm based on the alternating direction method of multipliers (ADMM) when inter-agent communications are subject to finite capacity and other practical constraints. While existing quantized ADMM approaches only work for quadratic local objectives, the proposed algorithm can deal with more general objective functions (possibly non-smooth) including the LASSO. Under certain convexity assumptions, our algorithm converges to a consensus within log⁥1+ηΩ\log_{1+\eta}\Omega iterations, where η>0\eta>0 depends on the local objectives and the network topology, and Ω\Omega is a polynomial determined by the quantization resolution, the distance between initial and optimal variable values, the local objective functions and the network topology. A tight upper bound on the consensus error is also obtained which does not depend on the size of the network.Comment: 30 pages, 4 figures; to be submitted to IEEE Trans. Signal Processing. arXiv admin note: text overlap with arXiv:1307.5561 by other author

    A Complexity-Based Hierarchy for Multiprocessor Synchronization

    Full text link
    For many years, Herlihy's elegant computability based Consensus Hierarchy has been our best explanation of the relative power of various types of multiprocessor synchronization objects when used in deterministic algorithms. However, key to this hierarchy is treating synchronization instructions as distinct objects, an approach that is far from the real-world, where multiprocessor programs apply synchronization instructions to collections of arbitrary memory locations. We were surprised to realize that, when considering instructions applied to memory locations, the computability based hierarchy collapses. This leaves open the question of how to better capture the power of various synchronization instructions. In this paper, we provide an approach to answering this question. We present a hierarchy of synchronization instructions, classified by their space complexity in solving obstruction-free consensus. Our hierarchy provides a classification of combinations of known instructions that seems to fit with our intuition of how useful some are in practice, while questioning the effectiveness of others. We prove an essentially tight characterization of the power of buffered read and write instructions.Interestingly, we show a similar result for multi-location atomic assignments

    Tight Bounds for Consensus Systems Convergence

    Full text link
    We analyze the asymptotic convergence of all infinite products of matrices taken in a given finite set, by looking only at finite or periodic products. It is known that when the matrices of the set have a common nonincreasing polyhedral norm, all infinite products converge to zero if and only if all infinite periodic products with period smaller than a certain value converge to zero, and bounds exist on that value. We provide a stronger bound holding for both polyhedral norms and polyhedral seminorms. In the latter case, the matrix products do not necessarily converge to 0, but all trajectories of the associated system converge to a common invariant space. We prove our bound to be tight, in the sense that for any polyhedral seminorm, there is a set of matrices such that not all infinite products converge, but every periodic product with period smaller than our bound does converge. Our technique is based on an analysis of the combinatorial structure of the face lattice of the unit ball of the nonincreasing seminorm. The bound we obtain is equal to half the size of the largest antichain in this lattice. Explicitly evaluating this quantity may be challenging in some cases. We therefore link our problem with the Sperner property: the property that, for some graded posets, -- in this case the face lattice of the unit ball -- the size of the largest antichain is equal to the size of the largest rank level. We show that some sets of matrices with invariant polyhedral seminorms lead to posets that do not have that Sperner property. However, this property holds for the polyhedron obtained when treating sets of stochastic matrices, and our bound can then be easily evaluated in that case. In particular, we show that for the dimension of the space n≄8n \geq 8, our bound is smaller than the previously known bound by a multiplicative factor of 32πn\frac{3}{2 \sqrt{\pi n}}
    • 

    corecore