14,134 research outputs found

    Autonomic computing meets SCADA security

    Get PDF
    © 2017 IEEE. National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the autonomic nervous system and is promising to meet the latest challenges in the cyber threat landscape. This paper provides a brief review of autonomic computing applications for SCADA systems and proposes architecture for cyber security

    An access control management protocol for Internet of things devices

    Get PDF
    Internet enabled computing devices are increasingly at risk of misuse by individuals or malware. Initially such misuse was targeted mainly at computers, however there is increasing targeting of tablet and smartphone devices. In this paper we examine an access control management protocol for Internet of things devices in order to attempt to provide some protection against misuse of such devices. Although anti-malware software is commonly used in computers, and is increasingly being used for tablets and smartphones, this may be a less practicable approach for Internet of things devices. The access control management protocol for Internet of things devices examined in this paper involves the use of physical proximity ‘registration’ for remote control of such devices, encryption of communications, verification of geo-location of the mobile device used to control the IoT device, safe operation controls, and exception reporting as a means of providing a tiered security approach for such devices

    Digital Transformation, Applications, and Vulnerabilities in Maritime and Shipbuilding Ecosystems

    Get PDF
    The evolution of maritime and shipbuilding supply chains toward digital ecosystems increases operational complexity and needs reliable communication and coordination. As labor and suppliers shift to digital platforms, interconnection, information transparency, and decentralized choices become ubiquitous. In this sense, Industry 4.0 enables smart digitalization in these environments. Many applications exist in two distinct but interrelated areas related to shipbuilding design and shipyard operational performance. New digital tools, such as virtual prototypes and augmented reality, begin to be used in the design phases, during the commissioning/quality control activities, and for training workers and crews. An application relates to using Virtual Prototypes and Augmented Reality during all the design and construction phases. Another application relates to the cybersecurity protection of operational networks that support shipbuilding supply chains that ensures the flow of material and labor to the shipyards. This protection requires a holistic approach to evaluate their vulnerability and understand ripple effects. This paper presents the applications of Industry 4.0 for the areas mentioned above. The first case in shipbuilding design is an example of how the virtual prototype of a ship, together with wearable devices enabling augmented reality, can be used for the quality control of the construction of ship systems. For the second case, we propose developing an artificial intelligence-based cybersecurity supply network framework that characterizes and monitors shipbuilding supply networks and determines ripple effects from disruptions caused by cyberattacks. This framework extends a novel risk management framework developed by Diaz and Smith and Smith and Diaz that considers complex tiered networks

    RowHammer: Reliability Analysis and Security Implications

    Full text link
    As process technology scales down to smaller dimensions, DRAM chips become more vulnerable to disturbance, a phenomenon in which different DRAM cells interfere with each other's operation. For the first time in academic literature, our ISCA paper exposes the existence of disturbance errors in commodity DRAM chips that are sold and used today. We show that repeatedly reading from the same address could corrupt data in nearby addresses. More specifically: When a DRAM row is opened (i.e., activated) and closed (i.e., precharged) repeatedly (i.e., hammered), it can induce disturbance errors in adjacent DRAM rows. This failure mode is popularly called RowHammer. We tested 129 DRAM modules manufactured within the past six years (2008-2014) and found 110 of them to exhibit RowHammer disturbance errors, the earliest of which dates back to 2010. In particular, all modules from the past two years (2012-2013) were vulnerable, which implies that the errors are a recent phenomenon affecting more advanced generations of process technology. Importantly, disturbance errors pose an easily-exploitable security threat since they are a breach of memory protection, wherein accesses to one page (mapped to one row) modifies the data stored in another page (mapped to an adjacent row).Comment: This is the summary of the paper titled "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" which appeared in ISCA in June 201

    Quality-of-service in wireless sensor networks: state-of-the-art and future directions

    Get PDF
    Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions
    • …
    corecore