56 research outputs found

    Prikaz slobodnog prostora za dvonožne hodajuće robote

    Get PDF
    Motion planning for biped walking robots is a highly demanding task because of the complex kinematics of such machines and the many degrees of freedom involved. One approach to dealing with this problem is to determine a feasible path in a reduced configuration space of the robot and then to perform the motion planning by searching for an appropriate sequence of steps which allows the locomotion along this path. In this work, a novel method for creating a free space representation for biped walking robots is presented. The method rests upon the approximation of the robot by a set of 3D hulls whose shapes allow efficient determination of feasible paths in a 3D configuration space, involving stepping over obstacles and changing the walking level. The robot’s environment is partitioned into two regions. In the first region, 2D motion planning can be performed, while the complexity of 3D motion planning in the second region can be significantly reduced by considering only a restricted set of paths sufficient for solving a wide range of locomotion tasks.Planiranje kretanja dvonožnih hodajućih robota predstavlja iznimno zahtjevan zadatak zbog složenosti kinematike takvih strojeva i velikog broja stupnjeva slobode gibanja. Jedan pristup tom problemu je da se prvo pronađe izvediva staza u reduciranom konfiguracijskom prostoru robota te da se zatim traži odgovarajući niz koraka koji omogućuje kretanje tom stazom. U ovom radu predstavljena je nova metoda stvaranja prikaza slobodnog prostora za dvonožne hodajuće robote. Metoda se temelji na aproksimaciji robota skupom jednostavnih trodimenzionalnih geometrijskih tijela čiji oblici omogućuju učinkovito određivanje izvedivih staza u 3D konfiguracijskom prostoru, koje mogu uključivati prekoračivanje prepreka te prelazak između hodnih površina različitih visina. Okolina robota dijeli se na dva područja. U prvom području može se primijeniti 2D planiranje koraka, dok se složenost 3D planiranja koraka u drugom području može značajno smanjiti tako što se pri planiranju uzima u obzir samo jedan reducirani skup staza, koji je pak dostatan za rješavanje velikog broja praktičnih zadataka

    Prikaz slobodnog prostora za dvonožne hodajuće robote

    Get PDF
    Motion planning for biped walking robots is a highly demanding task because of the complex kinematics of such machines and the many degrees of freedom involved. One approach to dealing with this problem is to determine a feasible path in a reduced configuration space of the robot and then to perform the motion planning by searching for an appropriate sequence of steps which allows the locomotion along this path. In this work, a novel method for creating a free space representation for biped walking robots is presented. The method rests upon the approximation of the robot by a set of 3D hulls whose shapes allow efficient determination of feasible paths in a 3D configuration space, involving stepping over obstacles and changing the walking level. The robot’s environment is partitioned into two regions. In the first region, 2D motion planning can be performed, while the complexity of 3D motion planning in the second region can be significantly reduced by considering only a restricted set of paths sufficient for solving a wide range of locomotion tasks.Planiranje kretanja dvonožnih hodajućih robota predstavlja iznimno zahtjevan zadatak zbog složenosti kinematike takvih strojeva i velikog broja stupnjeva slobode gibanja. Jedan pristup tom problemu je da se prvo pronađe izvediva staza u reduciranom konfiguracijskom prostoru robota te da se zatim traži odgovarajući niz koraka koji omogućuje kretanje tom stazom. U ovom radu predstavljena je nova metoda stvaranja prikaza slobodnog prostora za dvonožne hodajuće robote. Metoda se temelji na aproksimaciji robota skupom jednostavnih trodimenzionalnih geometrijskih tijela čiji oblici omogućuju učinkovito određivanje izvedivih staza u 3D konfiguracijskom prostoru, koje mogu uključivati prekoračivanje prepreka te prelazak između hodnih površina različitih visina. Okolina robota dijeli se na dva područja. U prvom području može se primijeniti 2D planiranje koraka, dok se složenost 3D planiranja koraka u drugom području može značajno smanjiti tako što se pri planiranju uzima u obzir samo jedan reducirani skup staza, koji je pak dostatan za rješavanje velikog broja praktičnih zadataka

    Planification de pas pour robots humanoïdes : approches discrètes et continues

    Get PDF
    Dans cette thèse nous nous intéressons à deux types d'approches pour la planification de pas pour robots humanoïdes : d'une part les approches discrètes où le robot n'a qu'un nombre fini de pas possibles, et d'autre part les approches où le robot se base sur des zones de faisabilité continues. Nous étudions ces problèmes à la fois du point de vue théorique et pratique. En particulier nous décrivons deux méthodes originales, cohérentes et efficaces pour la planification de pas, l'une dans le cas discret (chapitre 5) et l'autre dans le cas continu (chapitre 6). Nous validons ces méthodes en simulation ainsi qu'avec plusieurs expériences sur le robot HRP-2. ABSTRACT : In this thesis we investigate two types of approaches for footstep planning for humanoid robots: on one hand the discrete approaches where the robot has only a finite set of possible steps, and on the other hand the approaches where the robot uses continuous feasibility regions. We study these problems both on a theoretical and practical level. In particular, we describe two original, coherent and efficient methods for footstep planning, one in the discrete case (chapter 5), and one in the continuous case (chapter 6). We validate these methods in simulation and with several experiments on the robot HRP-2

    Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing

    Get PDF
    This paper describes an algorithm for the probabilistic fusion of sensor data from a variety of modalities (inertial, kinematic and LIDAR) to produce a single consistent position estimate for a walking humanoid. Of specific interest is our approach for continuous LIDAR-based localization which maintains reliable drift-free alignment to a prior map using a Gaussian Particle Filter. This module can be bootstrapped by constructing the map on-the-fly and performs robustly in a variety of challenging field situations. We also discuss a two-tier estimation hierarchy which preserves registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot. Extensive experimental demonstrations illustrate how the approach can enable the humanoid to walk over uneven terrain without stopping (for tens of minutes), which would otherwise not be possible. We characterize the performance of the estimator for each sensor modality and discuss the computational requirements.United States. Air Force Research Laboratory (Award FA8750-12-1-0321

    Systèmes cognitifs artificiels : du concept au développement de comportements intelligents en robotique autonome

    Get PDF
    Les travaux présentés dans le cadre de cette habilitation à diriger des recherches s’appuient sur le principe de la robotique développementale et plus particulièrement sur le paradigme de l’énaction. L’idée n’est donc pas de développer un robot intelligent, mais plutôt de concevoir un robot qui soit capable de le devenir. L’originalité du travail présenté dans ce mémoire repose sur le fait que le système cognitif artificiel est décomposé en deux parties distinctes : la première regroupe des processus cognitifs « inconscients » et la deuxième concerne les processus cognitifs « conscients ». Les processus cognitifs inconscients correspondent aux aptitudes (pré-programmées ou apprises) fonctionnant de manière quasi-automatique, alors que les processus cognitifs conscients contribuent au développement et à l’apprentissage de nouvelles aptitudes. La cognition associée au robot est donc le résultat d’un processus de développement par lequel le robot devient progressivement plus habile et acquiert les connaissances lui permettant d’interpréter le monde qui l’entoure.Ce mémoire se décompose en trois grandes parties. La première partie correspond à un curriculum vitae détaillé présentant l’ensemble de mon parcours professionnel. La deuxième partie est consacrée à la présentation plus approfondie de mes activités de recherches qui se sont focalisées sur le développement de systèmes cognitifs artificiels appliqués à la robotique avec des applications dans les domaines de la locomotion bipède, la perception et l’acquisition autonome de connaissances ainsi que les systèmes multi-robots et l’intelligence distribuée. Enfin, la troisième partie est une compilation de quatre articles de revue représentatives de l’ensemble de mes travaux de recherches

    Motion Planning : from Digital Actors to Humanoid Robots

    Get PDF
    Le but de ce travail est de développer des algorithmes de planification de mouvement pour des figures anthropomorphes en tenant compte de la géométrie, de la cinématique et de la dynamique du mécanisme et de son environnement. Par planification de mouvement, on entend la capacité de donner des directives à un niveau élevé et de les transformer en instructions de bas niveau qui produiront une séquence de valeurs articulaires qui reproduissent les mouvements humains. Ces instructions doivent considérer l'évitement des obstacles dans un environnement qui peut être plus au moins contraint. Ceci a comme consequence que l'on peut exprimer des directives comme “porte ce plat de la table jusqu'ac'estu coin du piano”, qui seront ensuite traduites en une série de buts intermédiaires et de contraintes qui produiront les mouvements appropriés des articulations du robot, de façon a effectuer l'action demandée tout en evitant les obstacles dans la chambre. Nos algorithmes se basent sur l'observation que les humains ne planifient pas des mouvements précis pour aller à un endroit donné. On planifie grossièrement la direction de marche et, tout en avançant, on exécute les mouvements nécessaires des articulations afin de nous mener à l'endroit voulu. Nous avons donc cherché à concevoir des algorithmes au sein d'un tel paradigme, algorithmes qui: 1. Produisent un chemin sans collision avec une version réduite du mécanisme et qui le mènent au but spécifié. 2. Utilisent les contrôleurs disponibles pour générer un mouvement qui assigne des valeurs à chacune des articulations du mécanisme pour suivre le chemin trouvé précédemment. 3. Modifient itérativement ces trajectoires jusqu'à ce que toutes les contraintes géométriques, cinématiques et dynamiques soient satisfaites. Dans ce travail nous appliquons cette approche à trois étages au problème de la planification de mouvements pour des figures anthropomorphes qui manipulent des objets encombrants tout en marchant. Dans le processus, plusieurs problèmes intéressants, ainsi que des propositions pour les résoudre, sont présentés. Ces problèmes sont principalement l'évitement tri-dimensionnel des obstacles, la manipulation des objets à deux mains, la manipulation coopérative des objets et la combinaison de comportements hétérogènes. La contribution principale de ce travail est la modélisation du problème de la génération automatique des mouvements de manipulation et de locomotion. Ce modèle considère les difficultés exprimées ci dessus, dans les contexte de mécanismes bipèdes. Trois principes fondent notre modèle: une décomposition fonctionnelle des membres du mécanisme, un modèle de manipulation coopérative et, un modéle simplifié des facultés de déplacement du mécanisme dans son environnement.Ce travail est principalement et surtout, un travail de synthèse. Nous nous servons des techniques disponibles pour commander la locomotion des mécanismes bipèdes (contrôleurs) provenant soit de l'animation par ordinateur, soit de la robotique humanoïde, et nous les relions dans un planificateur des mouvements original. Ce planificateur de mouvements est agnostique vis-à-vis du contrôleur utilisé, c'est-à-dire qu'il est capable de produire des mouvements libres de collision avec n'importe quel contrôleur tandis que les entrées et sorties restent compatibles. Naturellement, l'exécution de notre planificateur dépend en grand partie de la qualité du contrôleur utilisé. Dans cette thèse, le planificateur de mouvement est relié à différents contrôleurs et ses bonnes performances sont validées avec des mécanismes différents, tant virtuels que physiques. Ce travail à été fait dans le cadre des projets de recherche communs entre la France, la Russie et le Japon, où nous avons fourni le cadre de planification de mouvement à ses différents contrôleurs. Plusieurs publications issues de ces collaborations ont été présentées dans des conférences internationales. Ces résultats sont compilés et présentés dans cette thèse, et le choix des techniques ainsi que les avantages et inconvénients de notre approche sont discutés. ABSTRACT : The goal of this work is to develop motion planning algorithms for human-like figures taking into account the geometry, kinematics and dynamics of the mechanism and its environment. By motion planning it is understood the ability to specify high-level directives and transform them into low-level instructions for the articulations of the human-like figure. This is usually done while considering obstacle avoidance within the environment. This results in one being able to express directives as “carry this plate from the table to the piano corner” and have them translate into a series of goals and constraints that result in the pertinent motions from the robot's articulations in such a way as to carry out the action while avoiding collisions with the obstacles in the room. Our algorithms are based on the observation that humans do not plan their exact motions when getting to a location. We roughly plan our direction and, as we advance, we execute the motions needed to get to the desired place. This has led us to design algorithms that: 1. Produce a rough collision free path that takes a simplified model of the mechanism to the desired location. 2. Use available controllers to generate a trajectory that assigns values to each of the mechanism's articulations to follow the path. 3. Modify iteratively these trajectories until all the geometric, kinematic and dynamic constraints of the problem are satisfied.Throughout this work, we apply this three-stage approach with the problem of generating motions for human-like figures that manipulate bulky objects while walking. In the process, several interesting problems and their solution are brought into focus. These problems are, three- imensional collision avoidance, two-hand object manipulation, cooperative manipulation among several characters or robots and the combination of different behaviors. The main contribution of this work is the modeling of the automatic generation of cooperative manipulation motions. This model considers the above difficulties, all in the context of bipedal walking mechanisms. Three principles inform the model: a functional decomposition of the mechanism's limbs, a model for cooperative manipulation and, a simplified model to represent the mechanism when generating the rough path. This work is mainly and above all, one of synthesis. We make use of available techniques for controlling locomotion of bipedal mechanisms (controllers), from the fields of computer graphics and robotics, and connect them to a novel motion planner. This motion planner is controller-agnostic, that is, it is able to produce collision-free motions with any controller, despite whatever errors introduced by the controller itself. Of course, the performance of our motion planner depends on the quality of the used controller. In this thesis, the motion planner, connected to different controllers, is used and tested in different mechanisms, both virtual and physical. This in the context of different research projects in France, Russia and Japan, where we have provided the motion planning framework to their controllers. Several papers in peer-reviewed international conferences have resulted from these collaborations. The present work compiles these results and provides a more comprehensive and detailed depiction of the system and its benefits, both when applied to different mechanisms and compared to alternative approache

    Hand control of bipedal balance in quiet standing: implementations for lower extremity exoskeleton

    Get PDF
    Maintaining stable posture is important for humans, even though it is challenging because of our bipedal structure. One of the main balance related disorders is paraplegia due to spinal cord injury. People with a complete spinal cord injury have motor and sensory impairment that greatly reduces the ability to move their lower extremities. In recent years, lower extremity exoskeletons that apply torques generated by motors to the joints of the person have helped to them stand and walk. This research is a part of an extended project to build a new exoskeleton for use by individuals with paraplegia due to motor complete spinal cord injury. The goal of the project is to develop a device with an intuitive control mechanism capable of generating real time gait and balance. Commercial exoskeletons have achieved great steps regarding restoring ambulation. On the other hand, most of them do not actively support bipedal balance. In addition, commercially available exoskeletons except the REX need crutches to balance for people with motor complete paraplegia. The NJIT TREKKER, our laboratory’s research exoskeleton, suggests a novel, human-robot interface strategy that allows users to completely control and feel the trajectories of their exoskeleton-assisted feet, and be able to walk with considerably greater independence. The first study to develop TREKKER was performed before where a trekking pole was attached to each foot of a biped robot. Subjects controlled the trajectory of the foot of the biped by applying small forces to the trekking poles. The study proved that hands can produce trajectories similar to human foot trajectories when provided with haptic and visual feedback. If the hands and arms are effective surrogates for expressing ambulation, can they also be surrogates for natural balance in quiet standing? This is the main question that this dissertation answers. Importantly, this dissertation considers the ability of the arms and hands to make rapid adjustments to the center of pressure (COP) that will follow the center of mass (COM) and allow the person to retain balance to achieve this aim a perturbing system was constructed to study human body response to perturbations. Special shoes with small blocks attached to their soles were designed to study the capability of human body to adapt to base of support (BOS) reduction, and two special platforms with shoes on Pivots and two trekking poles attached to them were designed to study the effectiveness of using trekking poles. The pivots were used to eliminate the use of ankle strategy to retain balance by non-disabled subjects. In this study, subjects were asked to stand in front of the perturbing system and within the motion capture system’s field of view, then they were perturbed with at seven different forces with and without visual feedback in three different experiments: using regular shoes, the shoes with small blocks attached to their soles, and the shoes with pivots and trekking poles. Biomechanical parameters were studied to assess balance in A/P plane in each of the three experiments. The results suggest that the use of trekking poles is a viable approach to maintain balance during quiet standing. The main conclusion of this study is that using trekking poles is a good approach to maintain balance in quiet standing and as a response to small perturbations. Statistical analysis of SI, error signal peaks, and correlations comparing Pivots experiment to Regular experiment support this hypothesis. In addition, the high correlation coefficients between COM and COP of quiet standing on Pivots and in Pivots experiment with perturbations, and the high correlation coefficients of the correlation between COP and the trekking poles trajectories indicates that the trekking poles are working as a surrogate to the ankle joint. It is concluded that using the trekking poles, though the response to perturbations does not match the biological response, is good enough to maintain balance in quiet standing and perturbed quiet standing especially for small perturbations

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore