1,276 research outputs found

    Digital Twins: A Meta-Review on Their Conceptualization, Application, and Reference Architecture

    Get PDF
    The concept of digital twins (DTs) is receiving increasing attention in research and management practice. However, various facets around the concept are blurry, including conceptualization, application areas, and reference architectures for DTs. A review of preliminary results regarding the emerging research output on DTs is required to promote further research and implementation in organizations. To do so, this paper asks four research questions: (1) How is the concept of DTs defined? (2) Which application areas are relevant for the implementation of DTs? (3) How is a reference architecture for DTs conceptualized? and (4) Which directions are relevant for further research on DTs? With regard to research methods, we conduct a meta-review of 14 systematic literature reviews on DTs. The results yield important insights for the current state of conceptualization, application areas, reference architecture, and future research directions on DTs

    Feature-Based Classification of Bidirectional Transformation Approaches

    Get PDF
    International audienceBidirectional model transformation is a key technology in model-driven engineering (MDE), when two models that can change over time have to be kept constantly consistent with each other. While several model transformation tools include at least a partial support to bidirectionality, it is not clear how these bidirectional capabilities relate to each other and to similar classical problems in computer science, from the view update problem in databases to bidirectional graph transformations. This paper tries to clarify and visualize the space of design choices for bidirectional transformations from an MDE point of view, in the form of a feature model. The selected list of existing approaches are characterized by mapping them to the feature model. Then, the feature model is used to highlight some unexplored research lines in bidirectional transformations

    Towards Trace-Based Synchronization of Variability Annotations in Evolving Model-Driven Product Lines

    Get PDF

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)
    • …
    corecore