8,435 research outputs found

    Analysis of the divide-and-conquer method for electronic structure calculations

    Full text link
    We study the accuracy of the divide-and-conquer method for electronic structure calculations. The analysis is conducted for a prototypical subdomain problem in the method. We prove that the pointwise difference between electron densities of the global system and the subsystem decays exponentially as a function of the distance away from the boundary of the subsystem, under the gap assumption of both the global system and the subsystem. We show that gap assumption is crucial for the accuracy of the divide-and-conquer method by numerical examples. In particular, we show examples with the loss of accuracy when the gap assumption of the subsystem is invalid

    SCDM-k: Localized orbitals for solids via selected columns of the density matrix

    Full text link
    The recently developed selected columns of the density matrix (SCDM) method [J. Chem. Theory Comput. 11, 1463, 2015] is a simple, robust, efficient and highly parallelizable method for constructing localized orbitals from a set of delocalized Kohn-Sham orbitals for insulators and semiconductors with Γ\Gamma point sampling of the Brillouin zone. In this work we generalize the SCDM method to Kohn-Sham density functional theory calculations with k-point sampling of the Brillouin zone, which is needed for more general electronic structure calculations for solids. We demonstrate that our new method, called SCDM-k, is by construction gauge independent and is a natural way to describe localized orbitals. SCDM-k computes localized orbitals without the use of an optimization procedure, and thus does not suffer from the possibility of being trapped in a local minimum. Furthermore, the computational complexity of using SCDM-k to construct orthogonal and localized orbitals scales as O(N log N ) where N is the total number of k-points in the Brillouin zone. SCDM-k is therefore efficient even when a large number of k-points are used for Brillouin zone sampling. We demonstrate the numerical performance of SCDM-k using systems with model potentials in two and three dimensions.Comment: 25 pages, 7 figures; added more background sections, clarified presentation of the algorithm, revised the presentation of previous work, added a more high level overview of the new algorithm, and mildly clarified the presentation of the results (there were no changes to the numerical results themselves

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes

    Cyclic Density Functional Theory : A route to the first principles simulation of bending in nanostructures

    Full text link
    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) -- a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.Comment: Version 3 of the manuscript, Accepted for publication in Journal of the Mechanics and Physics of Solids, http://www.sciencedirect.com/science/article/pii/S002250961630368

    Three real-space discretization techniques in electronic structure calculations

    Full text link
    A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various types of finite-elements and wavelets. This paper reports on the results of several code development projects that approach problems related to the electronic structure using these three different discretization methods. We review the ideas behind these methods, give examples of their applications, and discuss their similarities and differences.Comment: 39 pages, 10 figures, accepted to a special issue of "physica status solidi (b) - basic solid state physics" devoted to the CECAM workshop "State of the art developments and perspectives of real-space electronic structure techniques in condensed matter and molecular physics". v2: Minor stylistic and typographical changes, partly inspired by referee comment
    • 

    corecore