708 research outputs found

    Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees

    Get PDF
    Time series data are sequences of data points collected at certain time intervals. The advance in mobile and sensor technologies has led to rapid growth in the available amount of time series data. The ability to search large time series data sets can be extremely useful in many applications. In healthcare, a system monitoring vital signals can perform a search against the past data and identify possible health threatening conditions. In engineering, a system can analyze performances of complicated equipment and identify possible failure situations or needs of maintenance based on historical data. Existing search methods for time series data are limited in many ways. Systems utilizing memory-bound or disk-bound indexes are restricted by the resources of a single machine or hard drive. Systems that do not use indexes must search through the entire database whenever a search is requested. The proposed system uses multidimensional index in the distributed storage environment to break the bound of one physical machine and allow for high data scalability. Utilizing an index allows the system to locate the patterns similar to the query without having to examine the entire dataset, which can significantly reduce the amount of computing resources required. The system uses an Apache HBase distributed key-value database to store the index and time series data across a cluster of machines. Evaluations were conducted to examine the system’s performance using synthesized data up to 30 million data points. The evaluation results showed that, despite some drawbacks inherited from an R-tree data structure, the system can efficiently search and retrieve patterns in large time series datasets

    Big tranSMART for clinical decision making

    Get PDF
    Molecular profiling data based patient stratification plays a key role in clinical decision making, such as identification of disease subgroups and prediction of treatment responses of individual subjects. Many existing knowledge management systems like tranSMART enable scientists to do such analysis. But in the big data era, molecular profiling data size increases sharply due to new biological techniques, such as next generation sequencing. None of the existing storage systems work well while considering the three ”V” features of big data (Volume, Variety, and Velocity). New Key Value data stores like Apache HBase and Google Bigtable can provide high speed queries by the Key. These databases can be modeled as Distributed Ordered Table (DOT), which horizontally partitions a table into regions and distributes regions to region servers by the Key. However, none of existing data models work well for DOT. A Collaborative Genomic Data Model (CGDM) has been designed to solve all these is- sues. CGDM creates three Collaborative Global Clustering Index Tables to improve the data query velocity. Microarray implementation of CGDM on HBase performed up to 246, 7 and 20 times faster than the relational data model on HBase, MySQL Cluster and MongoDB. Single nucleotide polymorphism implementation of CGDM on HBase outperformed the relational model on HBase and MySQL Cluster by up to 351 and 9 times. Raw sequence implementation of CGDM on HBase gains up to 440-fold and 22-fold speedup, compared to the sequence alignment map format implemented in HBase and a binary alignment map server. The integration into tranSMART shows up to 7-fold speedup in the data export function. In addition, a popular hierarchical clustering algorithm in tranSMART has been used as an application to indicate how CGDM can influence the velocity of the algorithm. The optimized method using CGDM performs more than 7 times faster than the same method using the relational model implemented in MySQL Cluster.Open Acces

    High dimensional biological data retrieval optimization with NoSQL technology.

    Get PDF
    Background High-throughput transcriptomic data generated by microarray experiments is the most abundant and frequently stored kind of data currently used in translational medicine studies. Although microarray data is supported in data warehouses such as tranSMART, when querying relational databases for hundreds of different patient gene expression records queries are slow due to poor performance. Non-relational data models, such as the key-value model implemented in NoSQL databases, hold promise to be more performant solutions. Our motivation is to improve the performance of the tranSMART data warehouse with a view to supporting Next Generation Sequencing data. Results In this paper we introduce a new data model better suited for high-dimensional data storage and querying, optimized for database scalability and performance. We have designed a key-value pair data model to support faster queries over large-scale microarray data and implemented the model using HBase, an implementation of Google's BigTable storage system. An experimental performance comparison was carried out against the traditional relational data model implemented in both MySQL Cluster and MongoDB, using a large publicly available transcriptomic data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value data model implemented on HBase exhibits an average 5.24-fold increase in high-dimensional biological data query performance compared to the relational model implemented on MySQL Cluster, and an average 6.47-fold increase on query performance on MongoDB. Conclusions The performance evaluation found that the new key-value data model, in particular its implementation in HBase, outperforms the relational model currently implemented in tranSMART. We propose that NoSQL technology holds great promise for large-scale data management, in particular for high-dimensional biological data such as that demonstrated in the performance evaluation described in this paper. We aim to use this new data model as a basis for migrating tranSMART's implementation to a more scalable solution for Big Data

    DualTable: A Hybrid Storage Model for Update Optimization in Hive

    Full text link
    Hive is the most mature and prevalent data warehouse tool providing SQL-like interface in the Hadoop ecosystem. It is successfully used in many Internet companies and shows its value for big data processing in traditional industries. However, enterprise big data processing systems as in Smart Grid applications usually require complicated business logics and involve many data manipulation operations like updates and deletes. Hive cannot offer sufficient support for these while preserving high query performance. Hive using the Hadoop Distributed File System (HDFS) for storage cannot implement data manipulation efficiently and Hive on HBase suffers from poor query performance even though it can support faster data manipulation.There is a project based on Hive issue Hive-5317 to support update operations, but it has not been finished in Hive's latest version. Since this ACID compliant extension adopts same data storage format on HDFS, the update performance problem is not solved. In this paper, we propose a hybrid storage model called DualTable, which combines the efficient streaming reads of HDFS and the random write capability of HBase. Hive on DualTable provides better data manipulation support and preserves query performance at the same time. Experiments on a TPC-H data set and on a real smart grid data set show that Hive on DualTable is up to 10 times faster than Hive when executing update and delete operations.Comment: accepted by industry session of ICDE201

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies

    Scaling kNN queries using statistical learning

    Get PDF
    The k-Nearest Neighbour (kNN) method is a fundamental building block for many sophisticated statistical learning models and has a wide application in different fields; for instance, in kNN regression, kNN classification, multi-dimensional items search, location-based services, spatial analytics, etc. However, nowadays with the unprecedented spread of data generated by computing and communicating devices has resulted in a plethora of low-dimensional large-scale datasets and their users' community, the need for efficient and scalable kNN processing is pressing. To this end, several parallel and distributed approaches and methodologies for processing exact kNN in low-dimensional large-scale datasets have been proposed; for example Hadoop-MapReduce-based kNN query processing approaches such as Spatial-Hadoop (SHadoop), and Spark-based approaches like Simba. This thesis contributes with a variety of methodologies for kNN query processing based on statistical and machine learning techniques over large-scale datasets. This study investigates the exact kNN query performance behaviour of the well-known Big Data Systems, SHadoop and Simba, that proposes building multi-dimensional Global and Local Indexes over low dimensional large-scale datasets. The rationale behind such methods is that when executing exact kNN query, the Global and Local indexes access a small subset of a large-scale dataset stored in a distributed file system. The Global Index is used to prune out irrelevant subsets of the dataset; while the multiple distributed Local Indexes are used to prune out unnecessary data elements of a partition (subset). The kNN execution algorithm of SHadoop and Simba involves loading data elements that reside in the relevant partitions from disks/network points to memory. This leads to significantly high kNN query response times; so, such methods are not suitable for low-latency applications and services. An extensive literature review showed that not enough attention has been given to access relatively small-sized but relevant data using kNN query only. Based on this limitation, departing from the traditional kNN query processing methods, this thesis contributes two novel solutions: Coordinator With Index (COWI) and Coordinator with No Index(CONI) approaches. The essence of both approaches rests on adopting a coordinator-based distributed processing algorithm and a way to structure computation and index the stored datasets that ensures that only a very small number of pieces of data are retrieved from the underlying data centres, communicated over the network, and processed by the coordinator for every kNN query. The expected outcome is that scalability is ensured and kNN queries can be processed in just tens of milliseconds. Both approaches are implemented using a NoSQL Database (HBase) achieving up to three orders of magnitude of performance gain compared with state of the art methods -SHadoop and Simba. It is common practice that the current state-of-the-art approaches for exact kNN query processing in low-dimensional space use Tree-based multi-dimensional Indexing methods to prune out irrelevant data during query processing. However, as data sizes continue to increase, (nowadays it is not uncommon to reach several Petabytes), the storage cost of Tree-based Index methods becomes exceptionally high, especially when opted to partition a dataset into smaller chunks. In this context, this thesis contributes with a novel perspective on how to organise low-dimensional large-scale datasets based on data space transformations deriving a Space Transformation Organisation Structure (STOS). STOS facilitates kNN query processing as if underlying datasets were uniformly distributed in the space. Such an approach bears significant advantages: first, STOS enjoys a minute memory footprint that is many orders of magnitude smaller than Index-based approaches found in the literature. Second, the required memory for such meta-data information over large-scale datasets, unlike related work, increases very slowly with dataset size. Hence, STOS enjoys significantly higher scalability. Third, STOS is relatively efficient to compute, outperforming traditional multivariate Index building times, and comparable, if not better, query response times. In the literature, the exact kNN query in a large-scale dataset was limited to low-dimensional space; this is because the query response time and memory space requirement of the Tree-based index methods increase with dimension. Unable to solve such exponential dependency on the dimension, researchers assume that no efficient solution exists and propose approximation kNN in high dimensional space. Unlike the approximated kNN query that tries to retrieve approximated nearest neighbours from large-scale datasets, in this thesis a new type of kNN query referred to as ‘estimated kNN query’ is proposed. The estimated kNN query processing methodology attempts to estimate the nearest neighbours based on the marginal cumulative distribution of underlying data using statistical copulas. This thesis showcases the performance trade-off of exact kNN and the estimate kNN queries in terms of estimation error and scalability. In contrast, kNN regression predicts that a value of a target variable based on kNN; but, particularly in a high dimensional large-scale dataset, a query response time of kNN regression, can be a significantly high due to the curse of dimensionality. In an effort to tackle this issue, a new probabilistic kNN regression method is proposed. The proposed method statistically predicts the values of a target variable of kNN without computing distance. In different contexts, a kNN as missing value algorithm in high dimensional space in Pytha, a distributed/parallel missing value imputation framework, is investigated. In Pythia, a different way of indexing a high-dimensional large-scale dataset is proposed by the group (not the work of the author of this thesis); by using such indexing methods, scaling-out of kNN in high dimensional space was ensured. Pythia uses Adaptive Resonance Theory (ART) -a machine learning clustering algorithm- for building a data digest (aka signatures) of large-scale datasets distributed across several data machines. The major idea is that given an input vector, Pythia predicts the most relevant data centres to get involved in processing, for example, kNN. Pythia does not retrieve exact kNN. To this end, instead of accessing the entire dataset that resides in a data-node, in this thesis, accessing only relevant clusters that reside in appropriate data-nodes is proposed. As we shall see later, such method has comparable accuracy to that of the original design of Pythia but has lower imputation time. Moreover, the imputation time does not significantly grow with a size of a dataset that resides in a data node or with the number of data nodes in Pythia. Furthermore, as Pythia depends utterly on the data digest built by ART to predict relevant data centres, in this thesis, the performance of Pythia is investigated by comparing different signatures constructed by a different clustering algorithms, the Self-Organising Maps. In this thesis, the performance advantages of the proposed approaches via extensive experimentation with multi-dimensional real and synthetic datasets of different sizes and context are substantiated and quantified

    Implementing Multidimensional Data Warehouses into NoSQL

    Get PDF
    International audienceNot only SQL (NoSQL) databases are becoming increasingly popular and have some interesting strengths such as scalability and flexibility. In this paper, we investigate on the use of NoSQL systems for implementing OLAP (On-Line Analytical Processing) systems. More precisely, we are interested in instantiating OLAP systems (from the conceptual level to the logical level) and instantiating an aggregation lattice (optimization). We define a set of rules to map star schemas into two NoSQL models: columnoriented and document-oriented. The experimental part is carried out using the reference benchmark TPC. Our experiments show that our rules can effectively instantiate such systems (star schema and lattice). We also analyze differences between the two NoSQL systems considered. In our experiments, HBase (columnoriented) happens to be faster than MongoDB (document-oriented) in terms of loading time
    • 

    corecore