95 research outputs found

    MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc's eigensolvers

    Full text link
    [EN] We consider the computation of a few eigenpairs of a generalized eigenvalue problem Ax = lambda Bx with block-tridiagonal matrices, not necessarily symmetric, in the context of Krylov methods. In this kind of computation, it is often necessary to solve a linear system of equations in each iteration of the eigensolver, for instance when B is not the identity matrix or when computing interior eigenvalues with the shift-and-invert spectral transformation. In this work, we aim to compare different direct linear solvers that can exploit the block-tridiagonal structure. Block cyclic reduction and the Spike algorithm are considered. A parallel implementation based on MPI is developed in the context of the SLEPc library. The use of GPU devices to accelerate local computations shows to be competitive for large block sizes.This work was supported by Agencia Estatal de Investigacion (AEI) under grant TIN2016-75985-P, which includes European Commission ERDF funds. Alejandro Lamas Davina was supported by the Spanish Ministry of Education, Culture and Sport through a grant with reference FPU13-06655.Lamas Daviña, A.; Roman, JE. (2018). MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc's eigensolvers. Parallel Computing. 74:118-135. https://doi.org/10.1016/j.parco.2017.11.006S1181357

    Dense and sparse parallel linear algebra algorithms on graphics processing units

    Full text link
    Una línea de desarrollo seguida en el campo de la supercomputación es el uso de procesadores de propósito específico para acelerar determinados tipos de cálculo. En esta tesis estudiamos el uso de tarjetas gráficas como aceleradores de la computación y lo aplicamos al ámbito del álgebra lineal. En particular trabajamos con la biblioteca SLEPc para resolver problemas de cálculo de autovalores en matrices de gran dimensión, y para aplicar funciones de matrices en los cálculos de aplicaciones científicas. SLEPc es una biblioteca paralela que se basa en el estándar MPI y está desarrollada con la premisa de ser escalable, esto es, de permitir resolver problemas más grandes al aumentar las unidades de procesado. El problema lineal de autovalores, Ax = lambda x en su forma estándar, lo abordamos con el uso de técnicas iterativas, en concreto con métodos de Krylov, con los que calculamos una pequeña porción del espectro de autovalores. Este tipo de algoritmos se basa en generar un subespacio de tamaño reducido (m) en el que proyectar el problema de gran dimensión (n), siendo m << n. Una vez se ha proyectado el problema, se resuelve este mediante métodos directos, que nos proporcionan aproximaciones a los autovalores del problema inicial que queríamos resolver. Las operaciones que se utilizan en la expansión del subespacio varían en función de si los autovalores deseados están en el exterior o en el interior del espectro. En caso de buscar autovalores en el exterior del espectro, la expansión se hace mediante multiplicaciones matriz-vector. Esta operación la realizamos en la GPU, bien mediante el uso de bibliotecas o mediante la creación de funciones que aprovechan la estructura de la matriz. En caso de autovalores en el interior del espectro, la expansión requiere resolver sistemas de ecuaciones lineales. En esta tesis implementamos varios algoritmos para la resolución de sistemas de ecuaciones lineales para el caso específico de matrices con estructura tridiagonal a bloques, que se ejecutan en GPU. En el cálculo de las funciones de matrices hemos de diferenciar entre la aplicación directa de una función sobre una matriz, f(A), y la aplicación de la acción de una función de matriz sobre un vector, f(A)b. El primer caso implica un cálculo denso que limita el tamaño del problema. El segundo permite trabajar con matrices dispersas grandes, y para resolverlo también hacemos uso de métodos de Krylov. La expansión del subespacio se hace mediante multiplicaciones matriz-vector, y hacemos uso de GPUs de la misma forma que al resolver autovalores. En este caso el problema proyectado comienza siendo de tamaño m, pero se incrementa en m en cada reinicio del método. La resolución del problema proyectado se hace aplicando una función de matriz de forma directa. Nosotros hemos implementado varios algoritmos para calcular las funciones de matrices raíz cuadrada y exponencial, en las que el uso de GPUs permite acelerar el cálculo.One line of development followed in the field of supercomputing is the use of specific purpose processors to speed up certain types of computations. In this thesis we study the use of graphics processing units as computer accelerators and apply it to the field of linear algebra. In particular, we work with the SLEPc library to solve large scale eigenvalue problems, and to apply matrix functions in scientific applications. SLEPc is a parallel library based on the MPI standard and is developed with the premise of being scalable, i.e. to allow solving larger problems by increasing the processing units. We address the linear eigenvalue problem, Ax = lambda x in its standard form, using iterative techniques, in particular with Krylov's methods, with which we calculate a small portion of the eigenvalue spectrum. This type of algorithms is based on generating a subspace of reduced size (m) in which to project the large dimension problem (n), being m << n. Once the problem has been projected, it is solved by direct methods, which provide us with approximations of the eigenvalues of the initial problem we wanted to solve. The operations used in the expansion of the subspace vary depending on whether the desired eigenvalues are from the exterior or from the interior of the spectrum. In the case of searching for exterior eigenvalues, the expansion is done by matrix-vector multiplications. We do this on the GPU, either by using libraries or by creating functions that take advantage of the structure of the matrix. In the case of eigenvalues from the interior of the spectrum, the expansion requires solving linear systems of equations. In this thesis we implemented several algorithms to solve linear systems of equations for the specific case of matrices with a block-tridiagonal structure, that are run on GPU. In the computation of matrix functions we have to distinguish between the direct application of a matrix function, f(A), and the action of a matrix function on a vector, f(A)b. The first case involves a dense computation that limits the size of the problem. The second allows us to work with large sparse matrices, and to solve it we also make use of Krylov's methods. The expansion of subspace is done by matrix-vector multiplication, and we use GPUs in the same way as when solving eigenvalues. In this case the projected problem starts being of size m, but it is increased by m on each restart of the method. The solution of the projected problem is done by directly applying a matrix function. We have implemented several algorithms to compute the square root and the exponential matrix functions, in which the use of GPUs allows us to speed up the computation.Una línia de desenvolupament seguida en el camp de la supercomputació és l'ús de processadors de propòsit específic per a accelerar determinats tipus de càlcul. En aquesta tesi estudiem l'ús de targetes gràfiques com a acceleradors de la computació i ho apliquem a l'àmbit de l'àlgebra lineal. En particular treballem amb la biblioteca SLEPc per a resoldre problemes de càlcul d'autovalors en matrius de gran dimensió, i per a aplicar funcions de matrius en els càlculs d'aplicacions científiques. SLEPc és una biblioteca paral·lela que es basa en l'estàndard MPI i està desenvolupada amb la premissa de ser escalable, açò és, de permetre resoldre problemes més grans en augmentar les unitats de processament. El problema lineal d'autovalors, Ax = lambda x en la seua forma estàndard, ho abordem amb l'ús de tècniques iteratives, en concret amb mètodes de Krylov, amb els quals calculem una xicoteta porció de l'espectre d'autovalors. Aquest tipus d'algorismes es basa a generar un subespai de grandària reduïda (m) en el qual projectar el problema de gran dimensió (n), sent m << n. Una vegada s'ha projectat el problema, es resol aquest mitjançant mètodes directes, que ens proporcionen aproximacions als autovalors del problema inicial que volíem resoldre. Les operacions que s'utilitzen en l'expansió del subespai varien en funció de si els autovalors desitjats estan en l'exterior o a l'interior de l'espectre. En cas de cercar autovalors en l'exterior de l'espectre, l'expansió es fa mitjançant multiplicacions matriu-vector. Aquesta operació la realitzem en la GPU, bé mitjançant l'ús de biblioteques o mitjançant la creació de funcions que aprofiten l'estructura de la matriu. En cas d'autovalors a l'interior de l'espectre, l'expansió requereix resoldre sistemes d'equacions lineals. En aquesta tesi implementem diversos algorismes per a la resolució de sistemes d'equacions lineals per al cas específic de matrius amb estructura tridiagonal a blocs, que s'executen en GPU. En el càlcul de les funcions de matrius hem de diferenciar entre l'aplicació directa d'una funció sobre una matriu, f(A), i l'aplicació de l'acció d'una funció de matriu sobre un vector, f(A)b. El primer cas implica un càlcul dens que limita la grandària del problema. El segon permet treballar amb matrius disperses grans, i per a resoldre-ho també fem ús de mètodes de Krylov. L'expansió del subespai es fa mitjançant multiplicacions matriu-vector, i fem ús de GPUs de la mateixa forma que en resoldre autovalors. En aquest cas el problema projectat comença sent de grandària m, però s'incrementa en m en cada reinici del mètode. La resolució del problema projectat es fa aplicant una funció de matriu de forma directa. Nosaltres hem implementat diversos algorismes per a calcular les funcions de matrius arrel quadrada i exponencial, en les quals l'ús de GPUs permet accelerar el càlcul.Lamas Daviña, A. (2018). Dense and sparse parallel linear algebra algorithms on graphics processing units [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112425TESI

    A Householder-based algorithm for Hessenberg-triangular reduction

    Full text link
    The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A−λBA - \lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations regrouped and accumulated into small dense matrices which are subsequently applied using matrix multiplication routines. A non-vanishing fraction of the total flop count must nevertheless still be performed as sequences of overlapping Givens rotations alternately applied from the left and from the right. The many data dependencies associated with this computational pattern leads to inefficient use of the processor and poor scalability. In this paper, we therefore introduce a fundamentally different approach that relies entirely on (large) Householder reflectors partially accumulated into block reflectors, by using (compact) WY representations. Even though the new algorithm requires more floating point operations than the state of the art algorithm, extensive experiments on both real and synthetic data indicate that it is still competitive, even in a sequential setting. The new algorithm is conjectured to have better parallel scalability, an idea which is partially supported by early small-scale experiments using multi-threaded BLAS. The design and evaluation of a parallel formulation is future work

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    High throughput multidimensional tridiagonal system solvers on FPGAs

    Get PDF
    We present a high performance tridiagonal solver library for Xilinx FPGAs optimized for multiple multi-dimensional systems common in real-world applications. An analytical performance model is developed and used to explore the design space and obtain rapid performance estimates that are over 85% accurate. This library achieves an order of magnitude better performance when solving large batches of systems than previous FPGA work. A detailed comparison with a current state-of-the-art GPU library for multi-dimensional tridiagonal systems on an Nvidia V100 GPU shows the FPGA achieving competitive or better runtime and significant energy savings of over 30%. Through this design, we learn lessons about the types of applications where FPGAs can challenge the current dominance of GPUs
    • …
    corecore