2,054 research outputs found

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    An efficient numerical method for computation of the number of complex zeros of real polynomials inside the open unit disk

    Get PDF
    AbstractIn this paper, a simple and efficient numerical method is proposed for computing the number of complex zeros of a real polynomial lying inside the unit disk. The proposed protocol uses the Boubaker polynomial expansion scheme (BPES) to build sequence of polynomials based on the concept of Sturm sequences. The method is used in a direct way without using any restrictions in reference to other existing methods. The protocol is applied to some example polynomials of different orders and utility of the algorithm is noticed

    Analytical Algorithm Expressions in Simulation of the Temperature Field in Electric Resistance Spot Welding

    Get PDF
    The paper presents the method of obtaining mathematical equations named "Analytical algorithm expressions" which enable simple creation of computer programs for simulation of the temperature field in the weld zone in electric resistance spot welding. Knowledge of these equations and the manner of their formulation make creation of program packages easier but they do not change anything with respect to the structure and scope of necessary input data which determine concrete initial and boundary conditions. In addition to providing algorithm description of the temperature field, the considered approach is applied for mathematical description of the field of any other physical value relevant for the welding process (specific current, electric potential, density, etc.). In this paper they are realized in temperature fields, as hierarchically superior to the fields of stress and current density, i.e. fields of physical properties of materials of the sheet and the electrode (superiority refers to the algorithm domain). Results of simulation for the non-stationary period of the welding process at two extreme discreet moments are presented at the end

    A mesoscale approach to simulate residual deformations in complex laser welding processes

    Get PDF
    Laser welding can be characterized by very small radii of beam, in the order of tenths of a millimeter, and very short high power inputs (more kW in few ms), and thus, it can be certainly classified as a microscale process with a high level of physical complexity. This is clearly incompatible, due to the high computational costs, with the analysis of macroscale processes related to large geometries and non-uniform welding patterns. In order to overcome this issue, a simplified finite element method (FEM)–based thermo-elastoplastic model is presented to simulate heat transfer and residual deformations due to thermal expansion and material plasticity. The idea is to substitute the microscale analysis with a mesoscale approach that renounces to describe in detail all the physical phenomena occurring in the heated zone and focuses attention on the correct prediction of the keyhole depth and weld pool size, that are the most important para meters to describe the mechanical characteristics of the welded joint. The concept of passive element, based on the numerical adjustment of the material properties in order to take into account the orthotropic behavior during the key hole formation, is introduced. In particular, the new approach has been tested on the pulsed laser welding process of two overlapping DC04 steel plates with thickness of 0.5 mm (so-called sandwich) and validated through experimental tests involving different input parameters, such as power, pulse duration and frequency, speed, and geometrical pattern

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    Modeling and control of a DC upset resistance butt welding process

    Get PDF
    This paper presents the analysis and synthesis of modeling and control of the DC upset resistance butt welding process used in rim production lines. A new control strategy is developed, enabling active control of the welding seam temperature and the upset size. As a result, set-up times and energy consumption are reduced significantly

    Life Cycle Impact of Different Joining Decisions on Vehicle Recycling

    Get PDF
    Stricter vehicle emission legislation has driven significant reduction in environmental impact of the vehicle use phase through increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. The joining techniques used for joining multi-material designs has led to reduction in efficiency of the current shredder-based recycling practices. This thesis quantifies this reduction in efficiency using data captured from industrial recycling trials. Life Cycle Assessment has been widely used to assess the environmental impact throughout the vehicle life cycle stages. Although there is significant research on material selection or substitution to improve the vehicle’s carbon footprint, the correlation between multi-material vehicle designs and the material separation through commonly used shredding process is not well captured in the current analysis. This thesis addresses this gap using data captured from industrial trials to measure the influence of different joining techniques on material recycling efficiencies. The effects of material degradation due to joining choices are examined using the life cycle analysis including exergy losses to account for a closed-loop system. The System Dynamics approach is then performed to demonstrate the dynamic life cycle impact of joining choices used for new multi-material vehicle designs. Observations from the case studies conducted in Australia and Europe showed that mechanical fasteners, particularly machine screws, are increasingly used to join different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints, such as joint strength, material type, size, diameter, location, temperature resistance, protrusion level, and surface smoothness, have an influence on the material liberation in the current sorting practices. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. The life cycle analysis including exergy losses shows a significant environmental burden caused by the amount of impurities and valuable material losses due to unliberated joints. By measuring the influence of joints quantitatively, this work has looked at the potential of improving the quality of materials recycled from ELV to be reused in a closed-loop system. The dynamic behaviours between the joining choices and their delayed influence on material recycling efficiencies from the life cycle perspective are performed using the data from case studies. It shows that the short-term reduction in environmental impact through multi-material structures is offset over the long-term by the increasing impurities and valuable material losses due to unliberated joints. The different vehicle recycling systems can then be resembled using two widely known system archetypes: “Fixes that Fail” and “Shifting the Burden”. Despite the adoption of more rigorous recycling approaches, the life cycle impact of different joining techniques on vehicle recycling continue to exist. The enactment of strict regulations in current ELV recycling systems is unable to solve the underlying ELV waste problem, and only prolongs the delay in material degradation due to joining choices. This work shows that the choice of joining techniques used for multi-material vehicle designs has a significant impact on the environmental performance during the ELV recycling phase

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies
    • …
    corecore