126 research outputs found

    Certifying the absence of spurious local minima at infinity

    Full text link
    When searching for global optima of nonconvex unconstrained optimization problems, it is desirable that every local minimum be a global minimum. This property of having no spurious local minima is true in various problems of interest nowadays, including principal component analysis, matrix sensing, and linear neural networks. However, since these problems are non-coercive, they may yet have spurious local minima at infinity. The classical tools used to analyze the optimization landscape, namely the gradient and the Hessian, are incapable of detecting spurious local minima at infinity. In this paper, we identify conditions that certify the absence of spurious local minima at infinity, one of which is having bounded subgradient trajectories. We check that they hold in several applications of interest.Comment: 31 pages, 4 figure

    From Symmetry to Geometry: Tractable Nonconvex Problems

    Full text link
    As science and engineering have become increasingly data-driven, the role of optimization has expanded to touch almost every stage of the data analysis pipeline, from the signal and data acquisition to modeling and prediction. The optimization problems encountered in practice are often nonconvex. While challenges vary from problem to problem, one common source of nonconvexity is nonlinearity in the data or measurement model. Nonlinear models often exhibit symmetries, creating complicated, nonconvex objective landscapes, with multiple equivalent solutions. Nevertheless, simple methods (e.g., gradient descent) often perform surprisingly well in practice. The goal of this survey is to highlight a class of tractable nonconvex problems, which can be understood through the lens of symmetries. These problems exhibit a characteristic geometric structure: local minimizers are symmetric copies of a single "ground truth" solution, while other critical points occur at balanced superpositions of symmetric copies of the ground truth, and exhibit negative curvature in directions that break the symmetry. This structure enables efficient methods to obtain global minimizers. We discuss examples of this phenomenon arising from a wide range of problems in imaging, signal processing, and data analysis. We highlight the key role of symmetry in shaping the objective landscape and discuss the different roles of rotational and discrete symmetries. This area is rich with observed phenomena and open problems; we close by highlighting directions for future research.Comment: review paper submitted to SIAM Review, 34 pages, 10 figure

    Nonsmooth rank-one matrix factorization landscape

    Full text link
    We provide the first positive result on the nonsmooth optimization landscape of robust principal component analysis, to the best of our knowledge. It is the object of several conjectures and remains mostly uncharted territory. We identify a necessary and sufficient condition for the absence of spurious local minima in the rank-one case. Our proof exploits the subdifferential regularity of the objective function in order to eliminate the existence quantifier from the first-order optimality condition known as Fermat's rule.Comment: 23 pages, 5 figure

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear
    • …
    corecore