44,245 research outputs found

    A Theory of Computation Based on Quantum Logic (I)

    Get PDF
    The (meta)logic underlying classical theory of computation is Boolean (two-valued) logic. Quantum logic was proposed by Birkhoff and von Neumann as a logic of quantum mechanics more than sixty years ago. The major difference between Boolean logic and quantum logic is that the latter does not enjoy distributivity in general. The rapid development of quantum computation in recent years stimulates us to establish a theory of computation based on quantum logic. The present paper is the first step toward such a new theory and it focuses on the simplest models of computation, namely finite automata. It is found that the universal validity of many properties of automata depend heavily upon the distributivity of the underlying logic. This indicates that these properties does not universally hold in the realm of quantum logic. On the other hand, we show that a local validity of them can be recovered by imposing a certain commutativity to the (atomic) statements about the automata under consideration. This reveals an essential difference between the classical theory of computation and the computation theory based on quantum logic

    Synthesis of Quantum Logic Circuits

    Full text link
    We discuss efficient quantum logic circuits which perform two tasks: (i) implementing generic quantum computations and (ii) initializing quantum registers. In contrast to conventional computing, the latter task is nontrivial because the state-space of an n-qubit register is not finite and contains exponential superpositions of classical bit strings. Our proposed circuits are asymptotically optimal for respective tasks and improve published results by at least a factor of two. The circuits for generic quantum computation constructed by our algorithms are the most efficient known today in terms of the number of expensive gates (quantum controlled-NOTs). They are based on an analogue of the Shannon decomposition of Boolean functions and a new circuit block, quantum multiplexor, that generalizes several known constructions. A theoretical lower bound implies that our circuits cannot be improved by more than a factor of two. We additionally show how to accommodate the severe architectural limitation of using only nearest-neighbor gates that is representative of current implementation technologies. This increases the number of gates by almost an order of magnitude, but preserves the asymptotic optimality of gate counts.Comment: 18 pages; v5 fixes minor bugs; v4 is a complete rewrite of v3, with 6x more content, a theory of quantum multiplexors and Quantum Shannon Decomposition. A key result on generic circuit synthesis has been improved to ~23/48*4^n CNOTs for n qubit

    The Postā€Modern Transcendental of Language in Science and Philosophy

    Get PDF
    In this chapter I discuss the deep mutations occurring today in our society and in our culture, the natural and mathematical sciences included, from the standpoint of the ā€œtranscendental of languageā€, and of the primacy of language over knowledge. That is, from the standpoint of the ā€œcompletion of the linguistic turnā€ in the foundations of logic and mathematics using Peirceā€™s algebra of relations. This evolved during the last century till the development of the Category Theory as universal language for mathematics, in many senses wider than set theory. Therefore, starting from the fundamental M. Stoneā€™s representation theorem for Boolean algebras, computer scientists developed a coalgebraic first-order semantics defined on Stoneā€™s spaces, for Boolean algebras, till arriving to the definition of a non-Turing paradigm of coalgebraic universality in computation. Independently, theoretical physicists developed a coalgebraic modelling of dissipative quantum systems in quantum field theory, interpreted as a thermo-field dynamics. The deep connection between these two coalgebraic constructions is the fact that the topologies of Stone spaces in computer science are the same of the C*-algebras of quantum physics. This allows the development of a new class of quantum computers based on coalgebras. This suggests also an intriguing explanation of why one of the most successful experimental applications of this coalgebraic modelling of dissipative quantum systems is just in cognitive neuroscience

    Turing machines based on unsharp quantum logic

    Full text link
    In this paper, we consider Turing machines based on unsharp quantum logic. For a lattice-ordered quantum multiple-valued (MV) algebra E, we introduce E-valued non-deterministic Turing machines (ENTMs) and E-valued deterministic Turing machines (EDTMs). We discuss different E-valued recursively enumerable languages from width-first and depth-first recognition. We find that width-first recognition is equal to or less than depth-first recognition in general. The equivalence requires an underlying E value lattice to degenerate into an MV algebra. We also study variants of ENTMs. ENTMs with a classical initial state and ENTMs with a classical final state have the same power as ENTMs with quantum initial and final states. In particular, the latter can be simulated by ENTMs with classical transitions under a certain condition. Using these findings, we prove that ENTMs are not equivalent to EDTMs and that ENTMs are more powerful than EDTMs. This is a notable difference from the classical Turing machines.Comment: In Proceedings QPL 2011, arXiv:1210.029
    • ā€¦
    corecore