50,567 research outputs found

    Methodological and empirical challenges in modelling residential location choices

    No full text
    The modelling of residential locations is a key element in land use and transport planning. There are significant empirical and methodological challenges inherent in such modelling, however, despite recent advances both in the availability of spatial datasets and in computational and choice modelling techniques. One of the most important of these challenges concerns spatial aggregation. The housing market is characterised by the fact that it offers spatially and functionally heterogeneous products; as a result, if residential alternatives are represented as aggregated spatial units (as in conventional residential location models), the variability of dwelling attributes is lost, which may limit the predictive ability and policy sensitivity of the model. This thesis presents a modelling framework for residential location choice that addresses three key challenges: (i) the development of models at the dwelling-unit level, (ii) the treatment of spatial structure effects in such dwelling-unit level models, and (iii) problems associated with estimation in such modelling frameworks in the absence of disaggregated dwelling unit supply data. The proposed framework is applied to the residential location choice context in London. Another important challenge in the modelling of residential locations is the choice set formation problem. Most models of residential location choices have been developed based on the assumption that households consider all available alternatives when they are making location choices. Due the high search costs associated with the housing market, however, and the limited capacity of households to process information, the validity of this assumption has been an on-going debate among researchers. There have been some attempts in the literature to incorporate the cognitive capacities of households within discrete choice models of residential location: for instance, by modelling households’ choice sets exogenously based on simplifying assumptions regarding their spatial search behaviour (e.g., an anchor-based search strategy) and their characteristics. By undertaking an empirical comparison of alternative models within the context of residential location choice in the Greater London area this thesis investigates the feasibility and practicality of applying deterministic choice set formation approaches to capture the underlying search process of households. The thesis also investigates the uncertainty of choice sets in residential location choice modelling and proposes a simplified probabilistic choice set formation approach to model choice sets and choices simultaneously. The dwelling-level modelling framework proposed in this research is practice-ready and can be used to estimate residential location choice models at the level of dwelling units without requiring independent and disaggregated dwelling supply data. The empirical comparison of alternative exogenous choice set formation approaches provides a guideline for modellers and land use planners to avoid inappropriate choice set formation approaches in practice. Finally, the proposed simplified choice set formation model can be applied to model the behaviour of households in online real estate environments.Open Acces

    Ellipsoidal Prediction Regions for Multivariate Uncertainty Characterization

    Get PDF
    While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times and variables of interest. Such dependencies are key in a large share of operational problems involving renewable power generation, load and electricity prices for instance. The few methods that account for dependencies translate to sampling scenarios based on given marginals and dependence structures. However, for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of polyhedra or ellipsoids. Consequently, we propose a systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined probability and minimum volume. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for misspecification of ellipsoidal prediction regions. Application results based on three datasets with wind, PV power and electricity prices, allow us to assess the skill of the resulting ellipsoidal prediction regions, in terms of calibration, sharpness and overall skill.Comment: 8 pages, 7 Figures, Submitted to IEEE Transactions on Power System

    An Efficient Monte Carlo-based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

    Full text link
    Incorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for dynamically selecting the number of samples used for the Monte Carlo simulation to solve the Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The proposed method is used to determine in a proactive manner the number of simulations to be done to extract the travel-time estimation for each specific request while respecting an error threshold as output quality level. The methodology requires a reduced effort on the application development side. We adopted an aspect-oriented programming language (LARA) together with a flexible dynamic autotuning library (mARGOt) respectively to instrument the code and to take tuning decisions on the number of samples improving the execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large fraction of simulations (between 36% and 81%) with respect to a static approach while considering different traffic situations, paths and error requirements. Given the negligible runtime overhead of the proposed approach, it results in an execution-time speedup between 1.5x and 5.1x. This speedup is reflected at infrastructure-level in terms of a reduction of around 36% of the computing resources needed to support the whole navigation pipeline

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Optimal Battery Energy Storage Placement for Transient Voltage Stability Enhancement

    Full text link
    A placement problem for multiple Battery Energy Storage System (BESS) units is formulated towards power system transient voltage stability enhancement in this paper. The problem is solved by the Cross-Entropy (CE) optimization method. A simulation-based approach is adopted to incorporate higher-order dynamics and nonlinearities of generators and loads. The objective is to maximize the voltage stability index, which is set up based on certain grid-codes. Formulations of the optimization problem are then discussed. Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on the New England 39-Bus system. Results indicate that installing BESS units at the optimized location can alleviate transient voltage instability issue compared with the original system with no BESS. The CE placement algorithm is also compared with the classic PSO (Particle Swarm Optimization) method, and its superiority is demonstrated in terms of fewer iterations for convergence with better solution qualities.Comment: This paper has been accepted by the 2019 IEEE PES General Meeting at Atlanta, GA in August 201

    DADA: data assimilation for the detection and attribution of weather and climate-related events

    Get PDF
    A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures
    • 

    corecore