95,176 research outputs found

    A theoretical framework for supervised learning from regions

    Get PDF
    Supervised learning is investigated, when the data are represented not only by labeled points but also labeled regions of the input space. In the limit case, such regions degenerate to single points and the proposed approach changes back to the classical learning context. The adopted framework entails the minimization of a functional obtained by introducing a loss function that involves such regions. An additive regularization term is expressed via differential operators that model the smoothness properties of the desired input/output relationship. Representer theorems are given, proving that the optimization problem associated to learning from labeled regions has a unique solution, which takes on the form of a linear combination of kernel functions determined by the differential operators together with the regions themselves. As a relevant situation, the case of regions given by multi-dimensional intervals (i.e., “boxes”) is investigated, which models prior knowledge expressed by logical propositions

    Domain adaptation of weighted majority votes via perturbed variation-based self-labeling

    Full text link
    In machine learning, the domain adaptation problem arrives when the test (target) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, for which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-val ued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound--the C-bound (Lacasse et al., 2007)--which involves the disagreement and leads to a well performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq. In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem

    Domain Adaptation of Majority Votes via Perturbed Variation-based Label Transfer

    Full text link
    We tackle the PAC-Bayesian Domain Adaptation (DA) problem. This arrives when one desires to learn, from a source distribution, a good weighted majority vote (over a set of classifiers) on a different target distribution. In this context, the disagreement between classifiers is known crucial to control. In non-DA supervised setting, a theoretical bound - the C-bound - involves this disagreement and leads to a majority vote learning algorithm: MinCq. In this work, we extend MinCq to DA by taking advantage of an elegant divergence between distribution called the Perturbed Varation (PV). Firstly, justified by a new formulation of the C-bound, we provide to MinCq a target sample labeled thanks to a PV-based self-labeling focused on regions where the source and target marginal distributions are closer. Secondly, we propose an original process for tuning the hyperparameters. Our framework shows very promising results on a toy problem
    • …
    corecore