1,759 research outputs found

    A theoretical entropy score as a single value to express inhibitor selectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.</p> <p>Results</p> <p>Here we propose a new theoretical entropy score that can be calculated from a set of IC<sub>50 </sub>data. In contrast to previous measures such as the 'selectivity score', Gini score, or partition index, the entropy score is non-arbitary, fully exploits IC<sub>50 </sub>data, and is not dependent on a reference enzyme. In addition, the entropy score gives the most robust values with data from different sources, because it is less sensitive to errors. We apply the new score to kinase and nuclear receptor profiling data, and to high-throughput screening data. In addition, through analyzing profiles of clinical compounds, we show quantitatively that a more selective kinase inhibitor is not necessarily more drug-like.</p> <p>Conclusions</p> <p>For quantifying selectivity from panel profiling, a theoretical entropy score is the best method. It is valuable for studying the molecular mechanisms of selectivity, and to steer compound progression in drug discovery programs.</p

    Target-specific compound selectivity for multi-target drug discovery and repurposing

    Get PDF
    Most drug molecules modulate multiple target proteins, leading either to therapeutic effects or unwanted side effects. Such target promiscuity partly contributes to high attrition rates and leads to wasted costs and time in the current drug discovery process, and makes the assessment of compound selectivity an important factor in drug development and repurposing efforts. Traditionally, selectivity of a compound is characterized in terms of its target activity profile (wide or narrow), which can be quantified using various statistical and information theoretic metrics. Even though the existing selectivity metrics are widely used for characterizing the overall selectivity of a compound, they fall short in quantifying how selective the compound is against a particular target protein (e.g., disease target of interest). We therefore extended the concept of compound selectivity towards target-specific selectivity, defined as the potency of a compound to bind to the particular protein in comparison to the other potential targets. We decompose the target-specific selectivity into two components: 1) the compound's potency against the target of interest (absolute potency), and 2) the compound's potency against the other targets (relative potency). The maximally selective compound-target pairs are then identified as a solution of a bi-objective optimization problem that simultaneously optimizes these two potency metrics. In computational experiments carried out using large-scale kinase inhibitor dataset, which represents a wide range of polypharmacological activities, we show how the optimization-based selectivity scoring offers a systematic approach to finding both potent and selective compounds against given kinase targets. Compared to the existing selectivity metrics, we show how the target-specific selectivity provides additional insights into the target selectivity and promiscuity of multi-targeting kinase inhibitors. Even though the selectivity score is shown to be relatively robust against both missing bioactivity values and the dataset size, we further developed a permutation-based procedure to calculate empirical p-values to assess the statistical significance of the observed selectivity of a compound-target pair in the given bioactivity dataset. We present several case studies that show how the target-specific selectivity can distinguish between highly selective and broadly-active kinase inhibitors, hence facilitating the discovery or repurposing of multi-targeting drugs.Peer reviewe

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases

    Protein Kinase Inhibitors - Selectivity or Toxicity?

    Get PDF
    Protein kinases are attractive therapeutic targets for various indications including cancer, cardiovascular, neurodegenerative and autoimmune diseases. This is due to the fact that they play key roles in the regulation of cell cycle, metabolism, cell adhesion, angiogenesis, regeneration and degeneration. Protein kinase families share a common catalytic core and hence usually display clear sequence and structural similarity. These sequence and structural similarities can lead to a lack of selectivity and off-target toxicity of drug candidates. The lack of selectivity can be beneficial but can also cause adverse toxicities which result in the discontinuation of promising drug candidates. The chapter reviews the challenges and common toxicities of protein kinase inhibitors and the latest advances in in-vitro and in-silico assays to screen for selectivity. The various methods for quantifying selectivity of kinase inhibitors and future directions including emerging more selective and safer kinase inhibitors have also been discussed

    Target-specific compound selectivity for multi-target drug discovery and repurposing

    Get PDF
    Most drug molecules modulate multiple target proteins, leading either to therapeutic effects or unwanted side effects. Such target promiscuity partly contributes to high attrition rates and leads to wasted costs and time in the current drug discovery process, and makes the assessment of compound selectivity an important factor in drug development and repurposing efforts. Traditionally, selectivity of a compound is characterized in terms of its target activity profile (wide or narrow), which can be quantified using various statistical and information theoretic metrics. Even though the existing selectivity metrics are widely used for characterizing the overall selectivity of a compound, they fall short in quantifying how selective the compound is against a particular target protein (e.g., disease target of interest). We therefore extended the concept of compound selectivity towards target-specific selectivity, defined as the potency of a compound to bind to the particular protein in comparison to the other potential targets. We decompose the target-specific selectivity into two components: 1) the compound’s potency against the target of interest (absolute potency), and 2) the compound’s potency against the other targets (relative potency). The maximally selective compound-target pairs are then identified as a solution of a bi-objective optimization problem that simultaneously optimizes these two potency metrics. In computational experiments carried out using large-scale kinase inhibitor dataset, which represents a wide range of polypharmacological activities, we show how the optimization-based selectivity scoring offers a systematic approach to finding both potent and selective compounds against given kinase targets. Compared to the existing selectivity metrics, we show how the target-specific selectivity provides additional insights into the target selectivity and promiscuity of multi-targeting kinase inhibitors. Even though the selectivity score is shown to be relatively robust against both missing bioactivity values and the dataset size, we further developed a permutation-based procedure to calculate empirical p-values to assess the statistical significance of the observed selectivity of a compound-target pair in the given bioactivity dataset. We present several case studies that show how the target-specific selectivity can distinguish between highly selective and broadly-active kinase inhibitors, hence facilitating the discovery or repurposing of multi-targeting drugs. </p

    Pathologically Activated Neuroprotection via Uncompetitive Blockade of \u3cem\u3eN\u3c/em\u3e-Methyl-d-aspartate Receptors with Fast Off-rate by Novel Multifunctional Dimer Bis(propyl)-cognitin

    Get PDF
    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Examination of Molecular Recognition in Protein-Ligand Interactions

    Get PDF
    This dissertation is a compilation of two main projects that were investigated during my thesis research. The first project was a prospective study which identified and characterized drug-like inhibitors of a prototype of bacterial two-component signal transduction response regulator using computational and experimental methods. The second project was the development and validation of a scoring function, PHOENIX, derived using high-resolution structures and calorimetry measurements to predict binding affinities of protein-ligand interactions. Collectively, my thesis research aimed to better understand the underlying driving forces and principles which govern molecular recognition and molecular design. A prospective study coupled computational predictions with experimental validation resulted in the discovery of first-in-class inhibitors targeting a signal transduction module important for bacterial virulence. Development and validation of the PHOENIX scoring function for binding affinity prediction derived using high-resolution structures and calorimetry measurements should guide future molecular recognition studies and endeavors in computer-aided molecular design. To request for an electronic copy of this dissertation, please email the author: yattang at gmail dot com)

    Targeting Aquaporin Function:Potent Inhibition of Aquaglyceroporin-3 by a Gold-Based Compound

    Get PDF
    Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development
    corecore