672 research outputs found

    A Converse Sum of Squares Lyapunov Result with a Degree Bound

    Full text link
    Sum of Squares programming has been used extensively over the past decade for the stability analysis of nonlinear systems but several questions remain unanswered. In this paper, we show that exponential stability of a polynomial vector field on a bounded set implies the existence of a Lyapunov function which is a sum-of-squares of polynomials. In particular, the main result states that if a system is exponentially stable on a bounded nonempty set, then there exists an SOS Lyapunov function which is exponentially decreasing on that bounded set. The proof is constructive and uses the Picard iteration. A bound on the degree of this converse Lyapunov function is also given. This result implies that semidefinite programming can be used to answer the question of stability of a polynomial vector field with a bound on complexity

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls

    Linearly Solvable Stochastic Control Lyapunov Functions

    Get PDF
    This paper presents a new method for synthesizing stochastic control Lyapunov functions for a class of nonlinear stochastic control systems. The technique relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation to a linear partial differential equation for a class of problems with a particular constraint on the stochastic forcing. This linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions are in fact viscosity super/subsolutions, and by the maximum principle are pointwise upper and lower bounds to the underlying value function, even for coarse polynomial approximations. Furthermore, the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method for generating nonlinear controllers with pointwise bounded distance from the optimal cost when using the optimal controller. These approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a-priori bounds on trajectory suboptimality when using these approximate value functions, as well as demonstrates that these methods, and bounds, can be applied to a more general class of nonlinear systems not obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio

    Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions

    Full text link
    This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration
    • …
    corecore