50 research outputs found

    Automatic Segmentation of Multiparty Dialogue

    Get PDF
    In this paper, we investigate the problem of automatically predicting segment boundaries in spoken multiparty dialogue. We extend prior work in two ways. We first apply approaches that have been proposed for predicting top-level topic shifts to the problem of identifying subtopic boundaries. We then explore the impact on performance of using ASR output as opposed to human transcription. Examination of the effect of features shows that predicting top-level and predicting subtopic boundaries are two distinct tasks: (1) for predicting subtopic boundaries, the lexical cohesion-based approach alone can achieve competitive results, (2) for predicting top-level boundaries, the machine learning approach that combines lexical-cohesion and conversational features performs best, and (3) conversational cues, such as cue phrases and overlapping speech, are better indicators for the top-level prediction task. We also find that the transcription errors inevitable in ASR output have a negative impact on models that combine lexical-cohesion and conversational features, but do not change the general preference of approach for the two tasks

    Using term clouds to represent segment-level semantic content of podcasts

    Get PDF
    Spoken audio, like any time-continuous medium, is notoriously difficult to browse or skim without support of an interface providing semantically annotated jump points to signal the user where to listen in. Creation of time-aligned metadata by human annotators is prohibitively expensive, motivating the investigation of representations of segment-level semantic content based on transcripts generated by automatic speech recognition (ASR). This paper examines the feasibility of using term clouds to provide users with a structured representation of the semantic content of podcast episodes. Podcast episodes are visualized as a series of sub-episode segments, each represented by a term cloud derived from a transcript generated by automatic speech recognition (ASR). Quality of segment-level term clouds is measured quantitatively and their utility is investigated using a small-scale user study based on human labeled segment boundaries. Since the segment-level clouds generated from ASR-transcripts prove useful, we examine an adaptation of text tiling techniques to speech in order to be able to generate segments as part of a completely automated indexing and structuring system for browsing of spoken audio. Results demonstrate that the segments generated are comparable with human selected segment boundaries

    Integrating lexical and prosodic features for automatic paragraph segmentation

    Get PDF
    Spoken documents, such as podcasts or lectures, are a growing presence in everyday life. Being able to automatically identify their discourse structure is an important step to understanding what a spoken document is about. Moreover, finer-grained units, such as paragraphs, are highly desirable for presenting and analyzing spoken content. However, little work has been done on discourse based speech segmentation below the level of broad topics. In order to examine how discourse transitions are cued in speech, we investigate automatic paragraph segmentation of TED talks using lexical and prosodic features. Experiments using Support Vector Machines, AdaBoost, and Neural Networks show that models using supra-sentential prosodic features and induced cue words perform better than those based on the type of lexical cohesion measures often used in broad topic segmentation. Moreover, combining a wide range of individually weak lexical and prosodic predictors improves performance, and modelling contextual information using recurrent neural networks outperforms other approaches by a large margin. Our best results come from using late fusion methods that integrate representations generated by separate lexical and prosodic models while allowing interactions between these features streams rather than treating them as independent information sources. Application to ASR outputs shows that adding prosodic features, particularly using late fusion, can significantly ameliorate decreases in performance due to transcription errors.The second author was funded from the EU’s Horizon 2020 Research and Innovation Programme under the GA H2020-RIA-645012 and the Spanish Ministry of Economy and Competitivity Juan de la Cierva program. The other authors were funded by the University of Edinburgh

    The non-Verbal Structure of Patient Case Discussions in Multidisciplinary Medical Team Meetings

    Get PDF
    Meeting analysis has a long theoretical tradition in social psychology, with established practical rami?cations in computer science, especially in computer supported cooperative work. More recently, a good deal of research has focused on the issues of indexing and browsing multimedia records of meetings. Most research in this area, however, is still based on data collected in laboratories, under somewhat arti?cial conditions. This paper presents an analysis of the discourse structure and spontaneous interactions at real-life multidisciplinary medical team meetings held as part of the work routine in a major hospital. It is hypothesised that the conversational structure of these meetings, as indicated by sequencing and duration of vocalisations, enables segmentation into individual patient case discussions. The task of segmenting audio-visual records of multidisciplinary medical team meetings is described as a topic segmentation task, and a method for automatic segmentation is proposed. An empirical evaluation based on hand labelled data is presented which determines the optimal length of vocalisation sequences for segmentation, and establishes the competitiveness of the method with approaches based on more complex knowledge sources. The effectiveness of Bayesian classi?cation as a segmentation method, and its applicability to meeting segmentation in other domains are discusse

    EXPLOITING BERT FOR MALFORMED SEGMENTATION DETECTION TO IMPROVE SCIENTIFIC WRITINGS

    Get PDF
    Writing a well-structured scientific documents, such as articles and theses, is vital for comprehending the document's argumentation and understanding its messages. Furthermore, it has an impact on the efficiency and time required for studying the document. Proper document segmentation also yields better results when employing automated Natural Language Processing (NLP) manipulation algorithms, including summarization and other information retrieval and analysis functions. Unfortunately, inexperienced writers, such as young researchers and graduate students, often struggle to produce well-structured professional documents. Their writing frequently exhibits improper segmentations or lacks semantically coherent segments, a phenomenon referred to as "mal-segmentation." Examples of mal-segmentation include improper paragraph or section divisions and unsmooth transitions between sentences and paragraphs. This research addresses the issue of mal-segmentation in scientific writing by introducing an automated method for detecting mal-segmentations, and utilizing Sentence Bidirectional Encoder Representations from Transformers (sBERT) as an encoding mechanism. The experimental results section shows a promising results for the detection of mal-segmentation using the sBERT technique

    The CALO meeting speech recognition and understanding system

    Get PDF
    ABSTRACT The CALO Meeting Assistant provides for distributed meeting capture, annotation, automatic transcription and semantic analysis of multi-party meetings, and is part of the larger CALO personal assistant system. This paper summarizes the CALO-MA architecture and its speech recognition and understanding components, which include realtime and offline speech transcription, dialog act segmentation and tagging, question-answer pair identification, action item recognition, and summarization

    DISCOURSE ANALYSIS OF LYRIC AND LYRIC-BASED CLASSIFICATION OF MUSIC

    Get PDF
    Master'sMASTER OF SCIENC
    corecore