55 research outputs found

    Traversing the Reality Gap via Simulator Tuning

    Full text link
    The large demand for simulated data has made the reality gap a problem on the forefront of robotics. We propose a method to traverse the gap by tuning available simulation parameters. Through the optimisation of physics engine parameters, we show that we are able to narrow the gap between simulated solutions and a real world dataset, and thus allow more ready transfer of leaned behaviours between the two. We subsequently gain understanding as to the importance of specific simulator parameters, which is of broad interest to the robotic machine learning community. We find that even optimised for different tasks that different physics engine perform better in certain scenarios and that friction and maximum actuator velocity are tightly bounded parameters that greatly impact the transference of simulated solutions.Comment: 8 Pages, Submitted to IROS202

    Locomotion and pose estimation in compliant, torque-controlled hexapedal robots

    Get PDF
    Several scenarios, such as disaster response or terrestrial and extra-terrestrial exploration, comprise environments that are dangerous or even inaccessible for humans. In those cases, autonomous robots pose a promising alternative to render such endeavours possible. While most of today’s robotic explorers are wheeled or tracked vehicles, legged systems gained increased attention in recent years. With their unique combination of omnidirectional mobility and intrinsic manipulation capabilities, they are envisioned to serve as the rough terrain specialists in scouting or sample and return missions. Especially, small to mid-size hexapods are of great interest for those scenarios. Providing static stability across a wide range of walking speeds, they offer an attractive trade-off between versatility and complexity. Another important advantage is their redundancy, allowing them to tolerate the loss of single legs. However, due to their small size, the computational on-board resources are limited. Thus, the use of smart and efficient algorithms is of utmost importance in order to enable autonomous operation within a priori unknown rough environments. Working towards such autonomous robotic scouts, this thesis contributes with the development, implementation, and test of a self-contained walking layer as well as a 6 degrees of freedom (DOF) leg odometry for compliant, torque-controlled, hexapedal robots. Herein, the important property of all presented algorithms is the sole use of proprioceptive measurements provided by the legs, i. e. joint angles and joint torques. Especially the joint torque sensors improve the walking process by enabling the use of sensitive compliance controllers and distributed collision detection. Comprising a set of algorithms, the walking layer organises and structures the walking process in order to generate robust, adaptive, and leg loss tolerant locomotion in uneven terrain. Furthermore, it encapsulates the walking process, and thus hides its complexity from higher-level algorithms such as navigation. Its three main functional components are a flexible, biologically-inspired gait coordination algorithm, single leg reflexes, and active joint compliance control. Thereof, the gait coordination algorithm realises temporal adaptation of the step sequence while reflexes adjust the leg trajectories to the local terrain. The joint compliance control reduces internal forces and allows for situation dependent stiffness adjustments. An algorithmic extensions to the basic gait coordination enables the immediate adaptation to leg loss. In combination with stiffness and pose adjustments, this allows the hexapod to retain stable locomotion on five legs. In order to account for the emerging gait, the leg odometry algorithm employs an optimisation approach to obtain a kinematics-based pose estimate from joint angle measurements. Fusing the resulting pitch and roll angle estimates with joint-torque-measurement-based attitude data, reduces the associated drift, and thus stabilises the overall pose estimate. Various simulations and experiments with the six-legged, torque-controlled DLR Crawler demonstrate the effectiveness of the proposed walking layer as well as the 6-DOF leg odometry.Für die planetare Exploration sowie den Einsatz in Katastrophengebieten sind autonome Laufroboter zunehmend von Interesse. In diesen Szenarien sollen sie den Menschen an gefährlichen oder schwer zugänglichen Orten ersetzen und dort Erkundungseinsätze sowie Probenahmen in schwierigem Gelände durchführen. Unter der Vielzahl an möglichen Systemen bieten im Besonderen kleinere Sechsbeiner einen sehr guten Kompromiss zwischen Stabilität, hoher Beweglichkeit, Vielseitigkeit und einer vertretbaren Komplexität der Regelung. Ein weiterer Vorteil ist ihre Redundanz, die es ihnen erlaubt, den Ausfall einzelner Beine mit geringem Aufwand zu kompensieren. Dementgegen ist die beschränkte Rechenkapazität ein Nachteil der reduzierten Größe. Um diesen auszugleichen und das autonome Agieren in einer unbekannten Umgebung zu ermöglichen, werden daher einfache und effiziente Algorithmen benötigt, die im Zusammenspiel jedoch ein komplexes Verhalten erzeugen. Auf dem Weg zum autonom explorierenden Laufroboter entwickelt diese Arbeit einen robusten, adaptiven und fehlertoleranten Laufalgorithmus sowie eine 6D Eigenbewegungsschätzung für nachgiebige, drehmomentgeregelte Sechsbeiner. Besonders herauszustellen ist, dass alle in der Arbeit vorgestellten Algorithmen ausschließlich die propriozeptive Sensorik der Beine verwenden. Durch diesen Ansatz kann der Laufprozess von anderen Prozessen, wie der Navigation, getrennt und somit der Datenaustausch effizient gestaltet werden. Für die Fortbewegung in unebenem Gelände kombiniert der vorgestellte Laufalgorithmus eine flexible, biologisch inspirierte Gangkoordination mit verschiedenen Einzelbeinreflexen und einer nachgiebigen Gelenkregelung. Hierbei übernimmt die Gangkoordination die zeitliche Steuerung der Schrittfolge, während die Einzelbeinreflexe für eine räumliche Variation der Fußtrajektorien zuständig sind. Die nachgiebige Gelenkregelung reduziert interne Kräfte und erlaubt eine Anpassung der Gelenksteifigkeiten an die lokalen Umgebungsbedingungen sowie den aktuellen Zustand des Roboters. Eine wichtige Eigenschaft des Laufalgorithmus ist seine Fähigkeit, den Ausfall einzelner Beine zu kompensieren. In diesem Fall erfolgt eine Adaption der Gangkoordination über die Erneuerung der Nachbarschaftsbeziehungen der Beine. Zusätzlich verbessern eine Veränderung der Pose und eine Erhöhung der Gelenksteifigkeiten die Stabilität des durch den Beinverlust beeinträchtigten Roboters. Gleich dem Laufalgorithmus verwendet die 6D Eigenbewegungsschätzung nur die Messungen der propriozeptiven Sensoren der Beine. Hierbei arbeitet der Algorithmus in einem dreistufigen Verfahren. Zuerst berechnet er mit Hilfe der Beinkinematik und einer Optimierung die Pose des Roboters. Nachfolgend bestimmt er aus den Gelenkmomentmessungen den Gravitationsvektor und berechnet daraus die Neigungswinkel des Systems. Eine Fusion dieser Werte mit den Nick- und Rollwinkeln der ersten Stufe stabilisiert daraufhin die gesamte Odometrie und reduziert deren Drift. Alle in dieser Arbeit entwickelten Algorithmen wurden mit Hilfe von Simulationen sowie Experimenten mit dem drehmomentgeregelten DLR Krabbler erfolgreich validiert

    Evolving embodied intelligence from materials to machines

    Get PDF
    International audienceNatural lifeforms specialise to their environmental niches across many levels; from low-level features such as DNA and proteins, through to higher-level artefacts including eyes, limbs, and overarching body plans. We propose Multi-Level Evolution (MLE), a bottom-up automatic process that designs robots across multiple levels and niches them to tasks and environmental conditions. MLE concurrently explores constituent molecular and material 'building blocks', as well as their possible assemblies into specialised morphological and sensorimotor configurations. MLE provides a route to fully harness a recent explosion in available candidate materials and ongoing advances in rapid manufacturing processes. We outline a feasible MLE architecture that realises this vision, highlight the main roadblocks and how they may be overcome, and show robotic applications to which MLE is particularly suited. By forming a research agenda to stimulate discussion between researchers in related fields, we hope to inspire the pursuit of multi-level robotic design all the way from material to machin

    Computer Simulation of Human-Robot Collaboration in the Context of Industry Revolution 4.0

    Get PDF
    The essential role of robot simulation for industrial robots, in particular the collaborative robots is presented in this chapter. We begin by discussing the robot utilization in the industry which includes mobile robots, arm robots, and humanoid robots. The author emphasizes the application of collaborative robots in regard to industry revolution 4.0. Then, we present how the collaborative robot utilization in the industry can be achieved through computer simulation by means of virtual robots in simulated environments. The robot simulation presented here is based on open dynamic engine (ODE) using anyKode Marilou. The author surveys on the use of dynamic simulations in application of collaborative robots toward industry 4.0. Due to the challenging problems which related to humanoid robots for collaborative robots and behavior in human-robot collaboration, the use of robot simulation may open the opportunities in collaborative robotic research in the context of industry 4.0. As developing a real collaborative robot is still expensive and time-consuming, while accessing commercial collaborative robots is relatively limited; thus, the development of robot simulation can be an option for collaborative robotic research and education purposes

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    A Bioinspired Dynamical Vertical Climbing Robot

    Get PDF
    This paper describes the inspiration, design, analysis, implementation of and experimentation with the first dynamical vertical climbing robot. Biologists have proposed a pendulous climbing model that abstracts remarkable similarities in dynamic wall scaling behavior exhibited by radically different animal species. We study numerically a version of that pendulous climbing template dynamically re-scaled for applicability to utilitarian payloads with conventional electronics and actuation. This simulation study reveals that the incorporation of passive compliance can compensate for an artifact’s poorer power density and scale disadvantages relative to biology. However the introduction of additional dynamical elements raises new concerns about stability regarding both the power stroke and limb coordination that we allay via mathematical analysis of further simplified models. Combining these numerical and analytical insights into a series of design prototypes, we document the correspondence of the various models to the variously scaled platforms and report that our approximately two kilogram platform climbs dynamically at vertical speeds up to 1.5 bodylengths per second. In particular, the final 2.6 kg final prototype climbs at an average steady state speed of 0.66 m/s against gravity on a carpeted vertical wall, in rough agreement with our various models’ predictions
    • …
    corecore