235 research outputs found

    PathFinder: A Visualization eMathTeacher for Actively Learning Dijstra's algorithm

    Get PDF
    PathFinder is a new eMathTeacher for actively learning Dijkstra's algorithm. In Sanchez-Torrubia et al. (2007) the concept of eMathTeacher was defined and the minimum as well as some additional requirements were described. The tool presented here is an enhanced paradigm of this new concept on Computer Aided Instruction (CAI) resources: an application designed following the eMathTeacher philosophy for active eLearning. The highlighting new feature provided by this application is an animated algorithm visualization panel showing, on the code, the current step the student is executing and/or where there is a user's mistake within the algorithm running. PathFinder also includes another two interesting new features: an active framework area for the algorithm data and the capability of saving/retrieving the created graph

    Proceedings of the Second Program Visualization Workshop, 2002

    Get PDF
    The Program Visualization Workshops aim to bring together researchers who design and construct program visualizations and, above all, educators who use and evaluate visualizations in their teaching. The first workshop took place in July 2000 at Porvoo, Finland. The second workshop was held in cooperation with ACM SIGCSE and took place at HornstrupCentret, Denmark in June 2002, immediately following the ITiCSE 2002 Conference in Aarhus, Denmark

    Continuous Assessment in Agile Learning using Visualizations and Clustering of Activity Data to Analyze Student Behavior

    Get PDF
    abstract: Software engineering education today is a technologically advanced and rapidly evolving discipline. Being a discipline where students not only design but also build new technology, it is important that they receive a hands on learning experience in the form of project based courses. To maximize the learning benefit, students must conduct project-based learning activities in a consistent rhythm, or cadence. Project-based courses that are augmented with a system of frequent, formative feedback helps students constantly evaluate their progress and leads them away from a deadline driven approach to learning. One aspect of this research is focused on evaluating the use of a tool that tracks student activity as a means of providing frequent, formative feedback. This thesis measures the impact of the tool on student compliance to the learning process. A personalized dashboard with quasi real time visual reports and notifications are provided to undergraduate and graduate software engineering students. The impact of these visual reports on compliance is measured using the log traces of dashboard activity and a survey instrument given multiple times during the course. A second aspect of this research is the application of learning analytics to understand patterns of student compliance. This research employs unsupervised machine learning algorithms to identify unique patterns of student behavior observed in the context of a project-based course. Analyzing and labeling these unique patterns of behavior can help instructors understand typical student characteristics. Further, understanding these behavioral patterns can assist an instructor in making timely, targeted interventions. In this research, datasets comprising of student’s daily activity and graded scores from an under graduate software engineering course is utilized for the purpose of identifying unique patterns of student behavior.Dissertation/ThesisMasters Thesis Engineering 201

    AXMEDIS 2007 Conference Proceedings

    Get PDF
    The AXMEDIS International Conference series has been established since 2005 and is focused on the research, developments and applications in the cross-media domain, exploring innovative technologies to meet the challenges of the sector. AXMEDIS2007 deals with all subjects and topics related to cross-media and digital-media content production, processing, management, standards, representation, sharing, interoperability, protection and rights management. It addresses the latest developments and future trends of the technologies and their applications, their impact and exploitation within academic, business and industrial communities

    A data-assisted approach to supporting instructional interventions in technology enhanced learning environments

    Get PDF
    The design of intelligent learning environments requires significant up-front resources and expertise. These environments generally maintain complex and comprehensive knowledge bases describing pedagogical approaches, learner traits, and content models. This has limited the influence of these technologies in higher education, which instead largely uses learning content management systems in order to deliver non-classroom instruction to learners. This dissertation puts forth a data-assisted approach to embedding intelligence within learning environments. In this approach, instructional experts are provided with summaries of the activities of learners who interact with technology enhanced learning tools. These experts, which may include instructors, instructional designers, educational technologists, and others, use this data to gain insight into the activities of their learners. These insights lead experts to form instructional interventions which can be used to enhance the learning experience. The novel aspect of this approach is that the actions of the intelligent learning environment are now not just those of the learners and software constructs, but also those of the educational experts who may be supporting the learning process. The kinds of insights and interventions that come from application of the data-assisted approach vary with the domain being taught, the epistemology and pedagogical techniques being employed, and the particulars of the cohort being instructed. In this dissertation, three investigations using the data-assisted approach are described. The first of these demonstrates the effects of making available to instructors novel sociogram-based visualizations of online asynchronous discourse. By making instructors aware of the discussion habits of both themselves and learners, the instructors are better able to measure the effect of their teaching practice. This enables them to change their activities in response to the social networks that form between their learners, allowing them to react to deficiencies in the learning environment. Through these visualizations it is demonstrated that instructors can effectively change their pedagogy based on seeing data of their students’ interactions. The second investigation described in this dissertation is the application of unsupervised machine learning to the viewing habits of learners using lecture capture facilities. By clustering learners into groups based on behaviour and correlating groups with academic outcome, a model of positive learning activity can be described. This is particularly useful for instructional designers who are evaluating the role of learning technologies in programs as it contextualizes how technologies enable success in learners. Through this investigation it is demonstrated that the viewership data of learners can be used to assist designers in building higher level models of learning that can be used for evaluating the use of specific tools in blended learning situations. Finally, the results of applying supervised machine learning to the indexing of lecture video is described. Usage data collected from software is increasingly being used by software engineers to make technologies that are more customizable and adaptable. In this dissertation, it is demonstrated that supervised machine learning can provide human-like indexing of lecture videos that is more accurate than current techniques. Further, these indices can be customized for groups of learners, increasing the level of personalization in the learning environment. This investigation demonstrates that the data-assisted approach can also be used by application developers who are building software features for personalization into intelligent learning environments. Through this work, it is shown that a data-assisted approach to supporting instructional interventions in technology enhanced learning environments is both possible and can positively impact the teaching and learning process. By making available to instructional experts the online activities of learners, experts can better understand and react to patterns of use that develop, making for a more effective and personalized learning environment. This approach differs from traditional methods of building intelligent learning environments, which apply learning theories a priori to instructional design, and do not leverage the in situ data collected about learners

    Facilitating algorithm visualization creation and adoption in education

    Get PDF
    The research question of this thesis is: How can we develop algorithm animations (AA) and AA systems further to better facilitate the creation and adoption of AA in education? The motivation for tackling this issue is that algorithm animation has not been widely used in teaching computer science. One of the main reasons for not taking full advantage of AA in teaching is the lack of time on behalf of the instructors. Furthermore, there is a shortage of ready-made, good quality algorithm visualizations. The main contributions are as follows: Effortless Creation of Algorithm Animation. We define a Taxonomy of Effortless Creation of Algorithm Animations. In addition, we introduce a new approach for teachers to create animations by allowing effortless on-the-fly creation of algorithm animations by applying visual algorithm simulation through a simple user interface. Proposed Standard for Algorithm Animation language. We define a Taxonomy of Algorithm Animation Languages to help comparing the different AA languages. The taxonomy and work by an international working group is used to define a new algorithm animation language, eXtensible Algorithm Animation Language, XAAL. Applications of XAAL in education. We provide two different processing approaches for using and producing XAAL animations with existing algorithm animation systems. In addition, we have a framework aiding in this integration as well as prototype implementations of the processes. Furthermore, we provide a novel solution to the problem of seamlessly integrating algorithm animations with hypertext. In our approach, the algorithm animation viewer is implemented purely with JavaScript and HTML. Finally, we introduce a processing model to easily produce lecture slides for a common presentation tool of XAAL animations

    An approach to pervasive monitoring in dynamic learning contexts : data sensing, communication support and awareness provision

    Get PDF
    It is within the capabilities of current technology to support the emerging learning paradigms. These paradigms suggest that today’s learning activities and environments are pervas ive and require a higher level of dynamism than the traditional learning contexts. Therefore, we have to rethink our approach to learning and use technology not only as a digital information support, but also as an instrument to reinforce knowledge, foster collaboration, promote creativity and provide richer learning experiences. Particularly, this thesis was motivated by the rapidly growing number of smartphone users and the fact that these devices are increasingly becoming more and more resource-rich, in terms of their communication and sensing technologies, display capabilities battery autonomy, etc. Hence, this dissertation benefits from the ubiquity and development of mobile technology, aiming to bridge the gap between the challenges posed by modern learning requirements and the capabilities of current technology. The sensors embedded in smartphones can be used to capture diverse behavioural and social aspects of the users. For example, using microphone and Bluetooth is possible to identify conversation patterns, discover users in proximity and detect face-to-face meetings. This fact opens up exciting possibilities to monitor the behaviour of the user and to provide meaningful feedback. This feedback offers useful information that can help people be aware of and reflect on their behaviour and its effects, and take the necessary actions to improve them. Consequently, we propose a pervasive monitoring system that take advantage of the capabilities of modern smartphones, us ing them to s upport the awarenes s provis ion about as pects of the activities that take place in today’s pervas ive learning environments. This pervasive monitoring system provides (i) an autonomous sensing platform to capture complex information about processes and interactions that take place across multiple learning environments, (ii) an on-demand and s elf-m anaged communication infras tructure, and (ii) a dis play facility to provide “awarenes s inform ation” to the s tudents and/or lecturers. For the proposed system, we followed a research approach that have three main components. First, the description of a generalized framework for pervasive sensing that enables collaborative sensing interactions between smartphones and other types of devices. By allowing complex data capture interactions with diverse remote sensors, devices and data sources, this framework allows to improve the information quality while saving energy in the local device. Second, the evaluation, through a real-world deployment, of the suitability of ad hoc networks to support the diverse communication processes required for pervasive monitoring. This component also includes a method to improve the scalability and reduce the costs of these networks. Third, the design of two awareness mechanisms to allow flexible provision of information in dynamic and heterogeneous learning contexts. These mechanisms rely on the use of smartphones as adaptable devices that can be used directly as awareness displays or as communication bridges to enable interaction with other remote displays available in the environment. Diverse aspects of the proposed system were evaluated through a number of simulations, real-world experiments, user studies and prototype evaluations. The experimental evaluation of the data capture and communication aspects of the system provided empirical evidence of the usefulness and suitability of the proposed approach to support the development of pervasive monitoring solutions. In addition, the proof-of-concept deployments of the proposed awareness mechanisms, performed in both laboratory and real-world learning environments, provided quantitative and qualitative indicators that such mechanisms improve the quality of the awareness information and the user experienceLa tecnología moderna tiene capacidad de dar apoyo a los paradigmas de aprendizaje emergentes. Estos paradigmas sugieren que las actividades de aprendizaje actuales, caracterizadas por la ubicuidad de entornos, son más dinámicas y complejas que los contextos de aprendizaje tradicionales. Por tanto, tenemos que reformular nuestro acercamiento al aprendizaje, consiguiendo que la tecnología sirva no solo como mero soporte de información, sino como medio para reforzar el conocimiento, fomentar la colaboración, estimular la creatividad y proporcionar experiencias de aprendizaje enriquecedoras. Esta tesis doctoral está motivada por el vertiginoso crecimiento de usuarios de smartphones y el hecho de que estos son cada vez más potentes en cuanto a tecnologías de comunicación, sensores, displays, autonomía energética, etc. Por tanto, esta tesis aprovecha la ubicuidad y el desarrollo de esta tecnología, con el objetivo de reducir la brecha entre los desafíos del aprendizaje moderno y las capacidades de la tecnología actual. Los sensores integrados en los smartphones pueden ser utilizados para reconocer diversos aspectos del comportamiento individual y social de los usuarios. Por ejemplo, a través del micrófono y el Bluetooth, es posible determinar patrones de conversación, encontrar usuarios cercanos y detectar reuniones presenciales. Este hecho abre un interesante abanico de posibilidades, pudiendo monitorizar aspectos del comportamiento del usuario y proveer un feedback significativo. Dicho feedback, puede ayudar a los usuarios a reflexionar sobre su comportamiento y los efectos que provoca, con el fin de tomar medidas necesarias para mejorarlo. Proponemos un sistema de monitorización generalizado que aproveche las capacidades de los smartphones para proporcionar información a los usuarios, ayudándolos a percibir y tomar conciencia sobre diversos aspectos de las actividades que se desarrollan en contextos de aprendizaje modernos. Este sistema ofrece: (i) una plataforma de detección autónoma, que captura información compleja sobre los procesos e interacciones de aprendizaje; (ii) una infraestructura de comunicación autogestionable y; (iii) un servicio de visualización que provee “información de percepción” a estudiantes y/o profesores. Para la elaboración de este sistema nos hemos centrado en tres áreas de investigación. Primero, la descripción de una infraestructura de detección generalizada, que facilita interacciones entre smartphones y otros dispositivos. Al permitir interacciones complejas para la captura de datos entre diversos sensores, dispositivos y fuentes de datos remotos, esta infraestructura consigue mejorar la calidad de la información y ahorrar energía en el dispositivo local. Segundo, la evaluación, a través de pruebas reales, de la idoneidad de las redes ad hoc como apoyo de los diversos procesos de comunicación requeridos en la monitorización generalizada. Este área incluye un método que incrementa la escalabilidad y reduce el coste de estas redes. Tercero, el diseño de dos mecanismos de percepción que permiten la provisión flexible de información en contextos de aprendizaje dinámicos y heterogéneos. Estos mecanismos descansan en la versatilidad de los smartphones, que pueden ser utilizados directamente como displays de percepción o como puentes de comunicación que habilitan la interacción con otros displays remotos del entorno. Diferentes aspectos del sistema propuesto han sido evaluados a través de simulaciones, experimentos reales, estudios de usuarios y evaluaciones de prototipos. La evaluación experimental proporcionó evidencia empírica de la idoneidad del sistema para apoyar el desarrollo de soluciones de monitorización generalizadas. Además, las pruebas de concepto realizadas tanto en entornos de aprendizajes reales como en el laboratorio, aportaron indicadores cuantitativos y cualitativos de que estos mecanismos mejoran la calidad de la información de percepción y la experiencia del usuario.Postprint (published version

    2016 Annual Report of the Graduate School of Engineering and Management, Air Force Institute of Technology

    Get PDF
    The Graduate School\u27s Annual Report highlights research focus areas, new academic programs, faculty accomplishments and news, and provides top-level sponsor-funded research data and information

    Promoting Programming Learning. Engagement, Automatic Assessment with Immediate Feedback in Visualizations

    Get PDF
    The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.Siirretty Doriast
    corecore