352 research outputs found

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Signals in the Soil: An Introduction to Wireless Underground Communications

    Get PDF
    In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well

    Fighting the network: MANET management in support of littoral operations

    Get PDF
    Advances in computer processing and communications capabilities have contributed to the recent explosion of mesh network technologies. These technologies’ operational benefits are of particular interest for those operating in the littorals. The dynamic complexities of the littorals force tactical decision-makers to adapt to a constantly changing battlespace in a constrained temporal and spatial environment. Ongoing research into the integration of unmanned systems and sensors as mobile ad-hoc network (MANET) nodes highlights the significant potential to improve situational awareness and force efficiency in the littoral environment. However, difficulties associated with tactical network operations and management make the littorals particularly challenging. There remains a need for a unified approach to managing these networks in a coherent and effective manner. The complexity of the littorals emphasizes the inherent interconnectedness of MANET management and command and control (C2). As a result, new and innovative approaches to C2 are also required. This thesis explores the value of modern network management systems as they contribute to the richness of the human-network interface, as well as the integration of network management and maneuver at the tactical level. The result is a proposal for a novel framework for littoral MANET management and C2 as a corollary of cyber-physical maneuver.http://archive.org/details/fightingnetworkm1094548561Outstanding ThesisLieutenant, United States NavyApproved for public release; distribution is unlimited

    Wireless Sensor Network: At a Glance

    Get PDF
    • …
    corecore